如图1, AB 是 ⊙ O 的直径,直线 AM 与 ⊙ O 相切于点 A ,直线 BN 与 ⊙ O 相切于点 B ,点 C (异于点 A ) 在 AM 上,点 D 在 ⊙ O 上,且 CD = CA ,延长 CD 与 BN 相交于点 E ,连接 AD 并延长交 BN 于点 F .
(1)求证: CE 是 ⊙ O 的切线;
(2)求证: BE = EF ;
(3)如图2,连接 EO 并延长与 ⊙ O 分别相交于点 G 、 H ,连接 BH .若 AB = 6 , AC = 4 ,求 tan ∠ BHE .
如图,已知二次函数的图象经过A(,),B(0,7)两点. ⑴求该抛物线的解析式及对称轴; ⑵当为何值时,? ⑶在轴上方作平行于轴的直线,与抛物线交于C,D两点(点C在对称轴的左侧),过点C,D作轴的垂线,垂足分别为F,E.当矩形CDEF为正方形时,求C点的坐标.
如图,Rt△ABO的顶点A是双曲线与直线在第二象限的交点,AB⊥轴于B且S△ABO=. (1)求这两个函数的解析式; (2)求直线与双曲线的两个交点A,C的坐标和△AOC的面积。
某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,为了使5月份的营业额达到633.6万元,那么3月份到5月份的平均增长率为多少?
在直角坐标平面内,二次函数图象的顶点为,且过点. (1)求该二次函数的解析式; (2)若点C(-3,12)是抛物线上的另一点,求点C关于对称轴为对称的对称点D的坐标。
某自来水公司为了鼓励市民节约用水,采取分段收费标准,若某用户居民每月应交水费y(元)是用户量x(方)的函数,其图象如图所示,根据图象回答下列问题:(10分) (1)分别求出x≤5和x>5时,y与x的函数关系式; (2)自来水公司的收费标准是什么? (3)若某户居民交水费9元,该月用水多少方