如图,在 ▱ ABCD 中, O 是对角线 AC 、 BD 的交点, BE ⊥ AC , DF ⊥ AC ,垂足分别为点 E 、 F .
(1)求证: OE = OF .
(2)若 BE = 5 , OF = 2 ,求 tan ∠ OBE 的值.
如图,在四边形 ABCD 中, AE ⊥ BD , CF ⊥ BD ,垂足分别为点 E , F .
(1)请你只添加一个条件(不另加辅助线),使得四边形 AECF 为平行四边形,你添加的条件是 ;
(2)添加了条件后,证明四边形 AECF 为平行四边形.
计算: ( - 1 ) 2021 + | - 2 | + 4 sin 30 ° - ( 8 3 - π ) 0 .
已知关于 x 的二次函数 y 1 = x 2 + bx + c (实数 b , c 为常数).
(1)若二次函数的图象经过点 ( 0 , 4 ) ,对称轴为 x = 1 ,求此二次函数的表达式;
(2)若 b 2 - c = 0 ,当 b - 3 ⩽ x ⩽ b 时,二次函数的最小值为21,求 b 的值;
(3)记关于 x 的二次函数 y 2 = 2 x 2 + x + m ,若在(1)的条件下,当 0 ⩽ x ⩽ 1 时,总有 y 2 ⩾ y 1 ,求实数 m 的最小值.
如图1, AB 是 ⊙ O 的直径,点 E 是 ⊙ O 上一动点,且不与 A , B 两点重合, ∠ EAB 的平分线交 ⊙ O 于点 C ,过点 C 作 CD ⊥ AE ,交 AE 的延长线于点 D .
(1)求证: CD 是 ⊙ O 的切线;
(2)求证: A C 2 = 2 AD ⋅ AO ;
(3)如图2,原有条件不变,连接 BE , BC ,延长 AB 至点 M , ∠ EBM 的平分线交 AC 的延长线于点 P , ∠ CAB 的平分线交 ∠ CBM 的平分线于点 Q .求证:无论点 E 如何运动,总有 ∠ P = ∠ Q .
已知锐角 ΔABC 中,角 A 、 B 、 C 的对边分别为 a 、 b 、 c ,边角总满足关系式: a sin A = b sin B = c sin C .
(1)如图1,若 a = 6 , ∠ B = 45 ° , ∠ C = 75 ° ,求 b 的值;
(2)某公园准备在园内一个锐角三角形水池 ABC 中建一座小型景观桥 CD (如图2所示),若 CD ⊥ AB , AC = 14 米, AB = 10 米, sin ∠ ACB = 5 3 14 ,求景观桥 CD 的长度.