初中数学

如图, ΔABC 中, ACB = 90 ° AC = 5 BC = 12 CO AB 于点 O D 是线段 OB 上一点, DE = 2 ED / / AC ( ADE < 90 ° ) ,连接 BE CD .设 BE CD 的中点分别为 P Q

(1)求 AO 的长;

(2)求 PQ 的长;

(3)设 PQ AB 的交点为 M ,请直接写出 | PM - MQ | 的值.

来源:2016年江苏省南通市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

ΔABC 中, E F 分别为线段 AB AC 上的点(不与 A B C 重合).

(1)如图1,若 EF / / BC ,求证: S ΔAEF S ΔABC = AE · AF AB · AC

(2)如图2,若 EF 不与 BC 平行,(1)中的结论是否仍然成立?请说明理由;

(3)如图3,若 EF 上一点 G 恰为 ΔABC 的重心, AE AB = 3 4 ,求 S ΔAEF S ΔABC 的值.

来源:2018年湖北省黄石市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

Rt Δ ABC 中, ACB = 90 ° D ΔABC 内一点,连接 AD BD ,在 BD 左侧作 Rt Δ BDE ,使 BDE = 90 ° ,以 AD DE 为邻边作 ADEF ,连接 CD DF

(1)若 AC = BC BD = DE

①如图1,当 B D F 三点共线时, CD DF 之间的数量关系为  

②如图2,当 B D F 三点不共线时,①中的结论是否仍然成立?请说明理由.

(2)若 BC = 2 AC BD = 2 DE CD AC = 4 5 ,且 E C F 三点共线,求 AF CE 的值.

来源:2019年辽宁省鞍山市中考数学试卷
  • 更新:2021-05-11
  • 题型:未知
  • 难度:未知

若正方形有两个相邻顶点在三角形的同一条边上,其余两个顶点分别在三角形的另两条边上,则正方形称为三角形该边上的内接正方形,中,设,各边上的高分别记为,各边上的内接正方形的边长分别记为

(1)模拟探究:如图,正方形边上的内接正方形,求证: 1 a + 1 h a = 1 x a

(2)特殊应用:若,求 1 b + 1 c 的值;

(3)拓展延伸:若为锐角三角形,,请判断的大小,并说明理由.

来源:2016年福建省莆田市中考数学试卷
  • 更新:2021-03-12
  • 题型:未知
  • 难度:未知

如图1,在四边形 ABCD 中,若 AC 平分 BAD A C 2 = AB · AD ,且 AD = AB + AC ,则我们称这样的四边形 ABCD 为“黄金四边形”, BAD 称为“黄金角”.

【概念理解】(1)已知四边形 ABCD 为“黄金四边形”, BAD 为“黄金角”, AB < AD ,若 AD = 1 ,则 AC =   

【问题探究】(2)如图2,在四边形 ABCD 中, BC / / AD BAC = DAC = D = 36 ° .求证:四边形 ABCD 为“黄金四边形”.

【拓展延伸】(3)如图3,在“黄金四边形” ABC A 1 中, BA A 1 为“黄金角”, AB < A A 1 ,在四边形 ABC A 1 外部依次作△ A A 1 A 2 ,△ A A 2 A 3 ,使四边形 AC A 1 A 2 A A 1 A 2 A 3 均为“黄金四边形”,且满足 CA A 2 A n A A n + 2 ( n = 1 ,2, 3 ) 均为“黄金角”, A A n < A A n + 1 ( n = 1 ,2, 3 )

①若 AC = 1 ,则第 n 个“黄金四边形”中, A A n =   (用含 n 的式子表示).

②若“黄金角” BA A 1 = 80 ° ,则当 A B A n 三点第一次在同一条直线上时, n =   

来源:2018年辽宁省朝阳市中考数学试卷
  • 更新:2021-05-10
  • 题型:未知
  • 难度:未知

在现实生活中,我们经常会看到许多“标准”的矩形,如我们的课本封面、 A 4 的打印纸等,其实这些矩形的长与宽之比都为 2 : 1 ,我们不妨就把这样的矩形称为“标准矩形”,在“标准矩形” ABCD 中, P DC 边上一定点,且 CP = BC ,如图所示.

(1)如图①,求证: BA = BP

(2)如图②,点 Q DC 上,且 DQ = CP ,若 G BC 边上一动点,当 ΔAGQ 的周长最小时,求 CG GB 的值;

(3)如图③,已知 AD = 1 ,在(2)的条件下,连接 AG 并延长交 DC 的延长线于点 F ,连接 BF T BF 的中点, M N 分别为线段 PF AB 上的动点,且始终保持 PM = BN ,请证明: ΔMNT 的面积 S 为定值,并求出这个定值.

来源:2017年湖北省黄石市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,已知 A(﹣3,﹣2), B(0,﹣2), C(﹣3,0), M是线段 AB上的一个动点,连接 CM,过点 MMNMCy轴于点 N,若点 MN在直线 ykx+ b上,则 b的最大值是(  )

A.

7 8

B.

3 4

C.

﹣1

D.

0

来源:2019年内蒙古包头市中考数学试卷
  • 更新:2021-04-09
  • 题型:未知
  • 难度:未知

如图,正方形 ABCD的边长为3 cmPQ分别从 BA出发沿 BCAD方向运动, P点的运动速度是1 cm/秒, Q点的运动速度是2 cm/秒,连接 AP并过 QQEAP垂足为 E

(1)求证:△ ABP∽△ QEA

(2)当运动时间 t为何值时,△ ABP≌△ QEA

(3)设△ QEA的面积为 y,用运动时刻 t表示△ QEA的面积 y(不要求考 t的取值范围).(提示:解答(2)(3)时可不分先后)

来源:2016年内蒙古赤峰市中考数学试卷
  • 更新:2021-03-22
  • 题型:未知
  • 难度:未知

如图, AB 是半圆 O 的直径, C AB 延长线上的点, AC 的垂直平分线交半圆于点 D ,交 AC 于点 E ,连接 DA DC .已知半圆 O 的半径为3, BC = 2

(1)求 AD 的长.

(2)点 P 是线段 AC 上一动点,连接 DP ,作 DPF = DAC PF 交线段 CD 于点 F .当 ΔDPF 为等腰三角形时,求 AP 的长.

来源:2018年贵州省遵义市中考数学试卷
  • 更新:2021-04-29
  • 题型:未知
  • 难度:未知

如图,在四边形 ABCD 中, AC BD 相交于点 O ABC = DAC = 90 ° tan ACB = 1 2 BO OD = 4 3 ,则 S ΔABD S ΔCBD =        

来源:2020年广东省深圳市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

问题背景 如图(1),已知 ΔABC ΔADE ,求证: ΔABD ΔACE

尝试应用 如图(2),在 ΔABC ΔADE 中, BAC = DAE = 90 ° ABC = ADE = 30 ° AC DE 相交于点 F ,点 D BC 边上, AD BD = 3 ,求 DF CF 的值;

拓展创新 如图(3), D ΔABC 内一点, BAD = CBD = 30 ° BDC = 90 ° AB = 4 AC = 2 3 ,直接写出 AD 的长.

来源:2020年湖北省武汉市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图,在△ ABC中, ADBCBEAC,垂足分别为 DEADBE相交于点 F

(1)求证:△ ACD∽△ BFD

(2)当tan∠ ABD=1, AC=3时,求 BF的长.

来源:2016年黑龙江省大兴安岭中考数学试卷
  • 更新:2021-04-16
  • 题型:未知
  • 难度:未知

已知矩形 ABCD 的一条边 AD = 8 ,将矩形 ABCD 折叠,使得顶点 B 落在 CD 边上的 P 点处

(Ⅰ)如图1,已知折痕与边 BC 交于点 O ,连接 AP OP OA .若 ΔOCP ΔPDA 的面积比为 1 : 4 ,求边 CD 的长.

(Ⅱ)如图2,在(Ⅰ)的条件下,擦去折痕 AO 、线段 OP ,连接 BP .动点 M 在线段 AP 上(点 M 与点 P A 不重合),动点 N 在线段 AB 的延长线上,且 BN = PM ,连接 MN PB 于点 F ,作 ME BP 于点 E .试问当动点 M N 在移动的过程中,线段 EF 的长度是否发生变化?若变化,说明变化规律.若不变,求出线段 EF 的长度.

来源:2016年四川省自贡市中考数学试卷
  • 更新:2021-04-29
  • 题型:未知
  • 难度:未知

已知:如图,在 Rt Δ ABC 中, ACB = 90 ° ,点 M 是斜边 AB 的中点, MD / / BC ,且 MD = CM DE AB 于点 E ,连接 AD CD

(1)求证: ΔMED ΔBCA

(2)求证: ΔAMD ΔCMD

(3)设 ΔMDE 的面积为 S 1 ,四边形 BCMD 的面积为 S 2 ,当 S 2 = 17 5 S 1 时,求 cos ABC 的值.

来源:2018年四川省资阳市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图, MBN = 90 ° ,点 C MBN 平分线上的一点,过点 C 分别作 AC BC CE BN ,垂足分别为点 C E AC = 4 2 ,点 P 为线段 BE 上的一点(点 P 不与点 B E 重合),连接 CP ,以 CP 为直角边,点 P 为直角顶点,作等腰直角三角形 CPD ,点 D 落在 BC 左侧.

(1)求证: CP CD = CE CB

(2)连接 BD ,请你判断 AC BD 的位置关系,并说明理由;

(3)设 PE = x ΔPBD 的面积为 S ,求 S x 之间的函数关系式.

来源:2017年辽宁省鞍山市中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

初中数学相似形综合题试题