如图,以 为直径的 经过 的顶点 ,过点 作 交 于点 ,交 于点 ,连接 交 于点 ,连接 ,在 的延长线上取一点 ,连接 ,使 .
(1)求证: 是 的切线;
(2)若 的半径是3, ,求 的长.
在矩形 中,点 是射线 上一动点,连接 ,过点 作 于点 ,交直线 于点 .
(1)当矩形 是正方形时,以点 为直角顶点在正方形 的外部作等腰直角三角形 ,连接 .
①如图1,若点 在线段 上,则线段 与 之间的数量关系是 ,位置关系是 ;
②如图2,若点 在线段 的延长线上,①中的结论还成立吗?如果成立,请给予证明;如果不成立,请说明理由;
(2)如图3,若点 在线段 上,以 和 为邻边作平行四边形 , 是 中点,连接 , , ,求 的最小值.
如图1,已知点 在四边形 的边 上,且 , 平分 ,与 交于点 , 分别与 、 交于点 、 .
(1)求证: ;
(2)如图2,若 ,求 的值;
(3)当四边形 的周长取最大值时,求 的值.
【感知】如图①,在四边形 中, ,点 在边 上, ,求证: .
【探究】如图②,在四边形 中, ,点 在边 上,点 在边 的延长线上, ,且 ,连接 交 于点 .
求证: .
【拓展】如图③,点 在四边形 内, 十 ,且 ,过 作 交 于点 ,若 ,延长 交 于点 .求证: .
如图, 过 的圆心,交 于点 、 , 是 的切线,点 是切点,已知 , .
(1)求证: ;
(2)求 的周长.
如图,在矩形 中, 是 的中点, ,垂足为 .
(1)求证: ;
(2)若 , ,求 的长.
矩形 中, , .将矩形折叠,使点 落在点 处,折痕为 .
(1)如图①,若点 恰好在边 上,连接 ,求 的值;
(2)如图②,若 是 的中点, 的延长线交 于点 ,求 的长.
如图,在和△中,、分别是、上一点,.
(1)当时,求证△.
证明的途径可以用下面的框图表示,请填写其中的空格.
(2)当时,判断与△是否相似,并说明理由.
在平面直角坐标系中,把与轴交点相同的二次函数图象称为“共根抛物线”.如图,抛物线的顶点为,交轴于点、(点在点左侧),交轴于点.抛物线与是“共根抛物线”,其顶点为.
(1)若抛物线经过点,求对应的函数表达式;
(2)当的值最大时,求点的坐标;
(3)设点是抛物线上的一个动点,且位于其对称轴的右侧.若与相似,求其“共根抛物线” 的顶点的坐标.
初步尝试
(1)如图①,在三角形纸片中,,将折叠,使点与点重合,折痕为,则与的数量关系为 ;
思考说理
(2)如图②,在三角形纸片中,,,将折叠,使点与点重合,折痕为,求的值;
拓展延伸
(3)如图③,在三角形纸片中,,,,将沿过顶点的直线折叠,使点落在边上的点处,折痕为.
①求线段的长;
②若点是边的中点,点为线段上的一个动点,将沿折叠得到△,点的对应点为点,与交于点,求的取值范围.
如图所示,二次函数的图象(记为抛物线与轴交于点,与轴分别交于点、,点、的横坐标分别记为,,且.
(1)若,,且过点,求该二次函数的表达式;
(2)若关于的一元二次方程的判别式△.求证:当时,二次函数的图象与轴没有交点.
(3)若,点的坐标为,,过点作直线垂直于轴,且抛物线的的顶点在直线上,连接、、,的延长线与抛物线交于点,若,求的最小值.
是的直径,点是上一点,连接、,直线过点,满足.
(1)如图①,求证:直线是的切线;
(2)如图②,点在线段上,过点作于点,直线交于点、,连接并延长交直线于点,连接,且,若的半径为1,,求的值.
如图,半径为4的中,弦的长度为,点是劣弧上的一个动点,点是弦的中点,点是弦的中点,连接、、.
(1)求的度数;
(2)当点沿着劣弧从点开始,逆时针运动到点时,求的外心所经过的路径的长度;
(3)分别记,的面积为,,当时,求弦的长度.
在矩形中,为边上一点,把沿翻折,使点恰好落在边上的点.
(1)求证:;
(2)若,,求的长;
(3)若,记,,求的值.