如图1,在矩形 ABCD 中, AB = 6 , BC = 8 ,动点 P , Q 分别从 C 点, A 点同时以每秒1个单位长度的速度出发,且分别在边 CA , AB 上沿 C → A , A → B 的方向运动,当点 Q 运动到点 B 时, P , Q 两点同时停止运动.设点 P 运动的时间为 t ( s ) ,连接 PQ ,过点 P 作 PE ⊥ PQ , PE 与边 BC 相交于点 E ,连接 QE .
(1)如图2,当 t = 5 s 时,延长 EP 交边 AD 于点 F .求证: AF = CE ;
(2)在(1)的条件下,试探究线段 AQ , QE , CE 三者之间的等量关系,并加以证明;
(3)如图3,当 t > 9 4 s 时,延长 EP 交边 AD 于点 F ,连接 FQ ,若 FQ 平分 ∠ AFP ,求 AF CE 的值.
某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完,两商店销售这两种产品每件的利润(元)如下表:
(1)设分配给甲店A型产品x件,这个公司卖出这100件产品的总利润W(元),求W关于x的函数关系式,并求出x的取值范围; (2)若要求总利润不低于17560元,有多少种不同分配方案,并将各种方案设计出来; (3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润.甲店的B型产品以及乙店的A、B型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大.
甲、乙两重灾区急需一批大型挖掘机,甲地需25台,乙地需23台;A.B两省获知情况后慷慨相助,分别捐赠挖掘机26台和22台并将其全部调往灾区.若从A省调运一台挖掘机到甲地要耗资0.4万元,到乙地要耗资0.3万元;从B省调运一台挖掘机到甲地要耗资0.5万元,到乙地要耗资0.2万元.设从A省调往甲地台,A.B两省将捐赠的挖掘机全部调往灾区共耗资y万元. (1)求出y与x之间的函数关系式及自变量x的取值范围; (2)若要使总耗资不超过15万元,有哪几种调运方案? (3)怎样设计调运方案能使总耗资最少?最少耗资是多少万元?
某化妆品公司每月付给销售人员的工资有两种方案.方案一:没有底薪,只拿销售提成;方案二:底薪加销售提成.设x(件)是销售商品的数量,y(元)是销售人员的月工资.如图所示,为方案一的函数图像,为方案二的函数图像.已知每件商品的销售提成方案二比方案一少7元.从图中信息解答如下问题 (注:销售提成是指从销售每件商品得到的销售额中提取一定数量的费用): (1)求的函数解析式; (2)请问方案二中每月付给销售人员的底薪是多少元? (3)小丽应选择哪种销售方案,才能使月工资更多?
某农场的一个开发商准备开发建设甲、乙两种户型的楼房,甲种楼房每套造价12万元,售价14.5万元;乙种楼房每套造价8万元,售价10万元,且它们的造价和售价始终不变.现准备建造甲、乙两种楼房共20套,所用资金不低于190万元,不高于200万元. (1)该开发商有哪几种建造方案? (2)该开发商采用哪种建造方案可获得最大利润?最大利润是多少? (3)若用(2)中所求得的利润再次建造楼房,请直接写出获得最大利润的建造方案.
我县化工园区一化工厂,组织20辆汽车装运A、B、C三种化学物资共200吨到某地.按计划20辆汽车都要装运,每辆汽车只能装运同一种物资且必须装满.请结合表中提供的信息,
解答下列问题: (1)设装运A种物资的车辆数为x,装运B种物资的车辆数为y.求y与x的函数关系式; (2)如果装运A种物资的车辆数不少于5辆,装运B种物资的车辆数不少于4辆,若要求总运费最少,应如何安排使得总运费最少,并求出最少总运费.