[初步尝试]
(1)如图①,在三角形纸片ABC中,∠ACB=90°,将ΔABC折叠,使点B与点C重合,折痕为MN,则AM与BM的数量关系为 ;
[思考说理]
(2)如图②,在三角形纸片ABC中,AC=BC=6,AB=10,将ΔABC折叠,使点B与点C重合,折痕为MN,求AMBM的值;
[拓展延伸]
(3)如图③,在三角形纸片ABC中,AB=9,BC=6,∠ACB=2∠A,将ΔABC沿过顶点C的直线折叠,使点B落在边AC上的点B'处,折痕为CM.
①求线段AC的长;
②若点O是边AC的中点,点P为线段OB'上的一个动点,将ΔAPM沿PM折叠得到△A'PM,点A的对应点为点A',A'M与CP交于点F,求PFMF的取值范围.
如图1,圆规两脚形成的角称为圆规的张角.一个圆规两脚均为12cm,最大张角,你能否画出一个半径为20cm的圆?请借助图2说明理由.(参考数据:,,,,,)
化简:.
解不等式组.
如图,已知直线,点A的坐标是(4,0),点D为x轴上位于点A右边的某一点,点B为直线上的一点,以点A、B、D为顶点作正方形. (1)若图仅看作符合条件的一种情况,求出所有符合条件的点D的坐标; (2)在图中,若点P以每秒1个单位长度的速度沿直线从点O移动到点B,与此同时点Q以相同的速度从点A出发沿着折线A-B-C移动,当点P到达点B时两点停止运动.试探究:在移动过程中,△PAQ的面积最大值是多少?
已知矩形纸片ABCD中,AB=2,BC=3. 操作:将矩形纸片沿EF折叠,使点B落在边CD上. 探究: (1)如图1,若点B与点D重合,你认为△EDA1和△FDC全等吗?如果全等,请给出证明,如果不全等,请说明理由; (2)如图2,若点B与CD的中点重合,请你判断△FCB1、△B1DG和△EA1G之间的关系,如果全等,只需写出结果,如果相似,请写出结果和相应的相似比; (3)如图2,请你探索,当点B落在CD边上何处,即B1C的长度为多少时,△FCB1与△B1DG全等.