[初步尝试]
(1)如图①,在三角形纸片ABC中,∠ACB=90°,将ΔABC折叠,使点B与点C重合,折痕为MN,则AM与BM的数量关系为 ;
[思考说理]
(2)如图②,在三角形纸片ABC中,AC=BC=6,AB=10,将ΔABC折叠,使点B与点C重合,折痕为MN,求AMBM的值;
[拓展延伸]
(3)如图③,在三角形纸片ABC中,AB=9,BC=6,∠ACB=2∠A,将ΔABC沿过顶点C的直线折叠,使点B落在边AC上的点B'处,折痕为CM.
①求线段AC的长;
②若点O是边AC的中点,点P为线段OB'上的一个动点,将ΔAPM沿PM折叠得到△A'PM,点A的对应点为点A',A'M与CP交于点F,求PFMF的取值范围.
如图所示,PA、PB是⊙O的切线,A、B为切点,∠APB=40°,点C是⊙O上不同于A、B的任意一点,求∠ACB的度数.
已知方程2(m+1)x2+4mx+3m=2,根据下列条件之一求m的值. (1)方程有两个相等的实数根; (2)方程有两个相反的实数根; (3)方程的一个根为0.
如图,在平面直角坐标系xOy中,二次函数y=﹣x2+bx+c的图象与x轴相交于点A(4,0),与y轴相交于点B(0,4),动点C是从点A出发,向O点运动,到达0点时停止运动,过点C作EC⊥x轴,交直线AB于点D,交抛物线于点E. (1)求二次函数的解析式; (2)连接OE交AB于F点,连接AE,在动点C的运动过程中,若△AOF的面积是△AEF面积的2倍,求点C的坐标? (3)在动点C的运动过程中,△DEF能否为等腰三角形?若能,请直接写出点F的坐标;若不能,请说明理由.
如图1,正方形ABCD中,点O为对角线AC的中点,点P在直线上AC(不与点O重合),作直线BP,分别作AE⊥BP,CF⊥BP,垂足分别为点E、点F. (1)求证:△ABE≌△BCF; (2)如图2,连接OE,OF,判断OE、OF的关系并证明你的结论; (3)若点P在如图3所示位置,请判断线段AE,OE,CF三者之间的关系,直接写出结论.