初中数学

如图, AOB = 90 ° ,反比例函数 y = - 2 x ( x < 0 ) 的图象过点 A ( - 1 , a ) ,反比例函数 y = k x ( k > 0 , x > 0 ) 的图象过点 B ,且 AB / / x 轴.

(1)求 a k 的值;

(2)过点 B MN / / OA ,交 x 轴于点 M ,交 y 轴于点 N ,交双曲线 y = k x 于另一点 C ,求 ΔOBC 的面积.

来源:2017年湖北省恩施州中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,在中,

(1)尺规作图:不写作法,保留作图痕迹.

①作的平分线,交斜边于点

②过点的垂线,垂足为点

(2)在(1)作出的图形中,求的长.

来源:2019年四川省达州市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图 1 所示, 在四边形 ABCD 中, 点 O E F G 分别是 AB BC CD AD 的中点, 连接 OE EF FG GO GE

(1) 证明: 四边形 OEFG 是平行四边形;

(2) 将 ΔOGE 绕点 O 顺时针旋转得到 ΔOMN ,如图 2 所示, 连接 GM EN

①若 OE = 3 OG = 1 ,求 EN GM 的值;

②试在四边形 ABCD 中添加一个条件, 使 GM EN 的长在旋转过程中始终相等 . (不 要求证明)

来源:2018年湖南省邵阳市中考数学试卷
  • 更新:2021-05-09
  • 题型:未知
  • 难度:未知

如图,的直径,为圆上的两点,,弦相交于点

(1)求证:

(2)若,求的半径;

(3)在(2)的条件下,过点的切线,交的延长线于点,过点两点(点在线段上),求的长.

来源:2019年四川省成都市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

ΔABC 中, ACB = 90 ° CD 是中线, AC = BC ,一个以点 D 为顶点的 45 ° 角绕点 D 旋转,使角的两边分别与 AC BC 的延长线相交,交点分别为点 E F DF AC 交于点 M DE BC 交于点 N

(1)如图1,若 CE = CF ,求证: DE = DF

(2)如图2,在 EDF 绕点 D 旋转的过程中,试证明 C D 2 = CE · CF 恒成立;

(3)若 CD = 2 CF = 2 ,求 DN 的长.

来源:2020年山东省枣庄市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.

(1)如图1,在中,的角平分线,分别是上的点.

求证:四边形是邻余四边形.

(2)如图2,在的方格纸中,在格点上,请画出一个符合条件的邻余四边形,使是邻余线,在格点上.

(3)如图3,在(1)的条件下,取中点,连结并延长交于点,延长于点.若的中点,,求邻余线的长.

来源:2019年浙江省宁波市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图, O ΔABC 的外接圆, AB 为直径, BAC 的平分线交 O 于点 D ,过点 D DE AC 分别交 AC AB 的延长线于点 E F

(1)求证: EF O 的切线;

(2)若 AC = 4 CE = 2 ,求 BD ̂ 的长度.(结果保留 π )

来源:2018年湖南省衡阳市中考数学试卷
  • 更新:2021-05-08
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, CA = CB BC A 相切于点 D ,过点 A AC 的垂线交 CB 的延长线于点 E ,交 A 于点 F ,连结 BF

(1)求证: BF A 的切线.

(2)若 BE = 5 AC = 20 ,求 EF 的长.

来源:2021年浙江省衢州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,在四边形 ABCD 中, ADC = B = 90 ° ,过点 D DE AB E ,若 DE = BE

(1)求证: DA = DC

(2)连接 AC DE 于点 F ,若 ADE = 30 ° AD = 6 ,求 DF 的长.

来源:2021年四川省凉山州中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

阅读与思考

请阅读下列科普材料,并完成相应的任务.

图算法

图算法也叫诺模图,是根据几何原理,将某一已知函数关系式中的各变量,分别编成有刻度的直线(或曲线),并把它们按一定的规律排列在一起的一种图形,可以用来解函数式中的未知量.比如想知道10摄氏度相当于多少华氏度,我们可根据摄氏温度与华氏温度之间的关系: F = 9 5 C + 32 得出,当 C = 10 时, F = 50 .但是如果你的温度计上有华氏温标刻度,就可以从温度计上直接读出答案,这种根据特制的线条进行计算的方法就是图算法.

再看一个例子:设有两只电阻,分别为5千欧和7.5千欧,问并联后的电阻值是多少?

我们可以根据公式 1 R = 1 R 1 + 1 R 2 求得 R 的值,也可以设计一种图算法直接得出结果:我们先来画出一个 120 ° 的角,再画一条角平分线,在角的两边及角平分线上用同样的单位长度进行刻度,这样就制好了一张算图.我们只要把角的两边刻着7.5和5的两点连成一条直线,这条直线与角平分线的交点的刻度值就是并联后的电阻值.

图算法得出的数据大多是近似值,但在大多数情况下是够用的,那些需要用同一类公式进行计算的测量制图人员,往往更能体会到它的优越性.

任务:

(1)请根据以上材料简要说明图算法的优越性;

(2)请用以下两种方法验证第二个例子中图算法的正确性:

①用公式 1 R = 1 R 1 + 1 R 2 计算:当 R 1 = 7 . 5 R 2 = 5 时, R 的值为多少;

②如图,在 ΔAOB 中, AOB = 120 ° OC ΔAOB 的角平分线, OA = 7 . 5 OB = 5 ,用你所学的几何知识求线段 OC 的长.

来源:2021年山西省中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图, O 为线段 PB 上一点,以 O 为圆心, OB 长为半径的 O PB 于点 A ,点 C O 上,连接 PC ,满足 P C 2 = PA PB

(1)求证: PC O 的切线;

(2)若 AB = 3 PA ,求 AC BC 的值.

来源:2021年江苏省盐城市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = BC ,以 ΔABC 的边 AB 为直径作 O ,交 AC 于点 D ,过点 D DE BC ,垂足为点 E

(1)试证明 DE O 的切线;

(2)若 O 的半径为5, AC = 6 10 ,求此时 DE 的长.

来源:2020年山东省聊城市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = 8 BC = 4 CA = 6 CD / / AB BD ABC 的平分线, BD AC 于点 E ,求 AE 的长.

来源:2018年江西省中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图, AG HAF 的平分线,点 E AF 上,以 AE 为直径的 O AG 于点 D ,过点 D AH 的垂线,垂足为点 C ,交 AF 于点 B

(1)求证:直线 BC O 的切线;

(2)若 AC = 2 CD ,设 O 的半径为 r ,求 BD 的长度.

来源:2018年新疆乌鲁木齐市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图, AB O 的直径,弦 CD AB 于点 E ,点 F O 上一点,且 AC ̂ = CF ̂ ,连接 FB FD FD AB 于点 N

(1)若 AE = 1 CD = 6 ,求 O 的半径;

(2)求证: ΔBNF 为等腰三角形;

(3)连接 FC 并延长,交 BA 的延长线于点 P ,过点 D O 的切线,交 BA 的延长线于点 M .求证: ON · OP = OE · OM

来源:2019年广西柳州市中考数学试卷
  • 更新:2021-04-29
  • 题型:未知
  • 难度:未知

初中数学相似三角形的判定与性质解答题