如图所示,以 的边 为直径作 ,点 在 上, 是 的弦, ,过点 作 于点 ,交 于点 ,过 作 交 的延长线于点 .
(1)求证: 是 的切线;
(2)求证: ;
(3)若 , ,求 的长.
如图,已知点D是△ABC的边AC上的一点,连接BD.∠ABD=∠C,AB=6,AD=4.
(1)求证:△ABD∽△ACB;
(2)求线段CD的长.
如图①,在钝角 中, , ,点 为边 中点,点 为边 中点,将 绕点 逆时针方向旋转 度 .
(1)如图②,当 时,连接 、 .求证: ;
(2)如图③,直线 、 交于点 .在旋转过程中, 的大小是否发生变化?如变化,请说明理由;如不变,请求出这个角的度数;
(3)将 从图①位置绕点 逆时针方向旋转 ,求点 的运动路程.
基本模型
如图1,点A,F,B在同一直线上,若∠A=∠B=∠EFC=90°,易得△AFE∽△BCF.
(1)模型拓展:
如图2,点A,F,B在同一直线上,若∠A=∠B=∠EFC,求证:△AFE∽△BCF;
(2)拓展应用:如图3,AB是半圆⊙O的直径,弦长AC=BC=4,E,F分别是AC,AB上的一点,若∠CFE=45°.若设AE=y,BF=x,求出y与x的函数关系式及y的最大值;
如图,在矩形 中, , , 平分 ,分别交 , 的延长线于点 , ;连接 ,过点 作 ,分别交 , 于点 , .
(1)求 的长;
(2)求证: .
(年青海省西宁市)如图,已知BC为⊙O的直径,BA平分∠FBC交⊙O于点A,D是射线BF上的一点,且满足,过点O作OM⊥AC于点E,交⊙O于点M,连接BM,AM.
(1)求证:AD是⊙O的切线;
(2)若sin∠ABM=,AM=6,求⊙O的半径.
小明将两个直角三角形纸片如图(1)那样拼放在同一平面上,抽象出如图(2)的平面图形, 与 恰好为对顶角, ,连接 , ,点 是线段 上一点.
探究发现:
(1)当点 为线段 的中点时,连接 (如图(2) ,小明经过探究,得到结论: .你认为此结论是否成立? .(填"是"或"否"
拓展延伸:
(2)将(1)中的条件与结论互换,即: ,则点 为线段 的中点.请判断此结论是否成立.若成立,请写出证明过程;若不成立,请说明理由.
问题解决:
(3)若 , ,求 的长.
如图,在 中, , 与 相切于点 ,过点 作 的垂线交 的延长线于点 ,交 于点 ,连结 .
(1)求证: 是 的切线.
(2)若 , ,求 的长.
如图,在四边形 中, ,过点 作 于 ,若 .
(1)求证: ;
(2)连接 交 于点 ,若 , ,求 的长.
阅读与思考
请阅读下列科普材料,并完成相应的任务.
图算法 图算法也叫诺模图,是根据几何原理,将某一已知函数关系式中的各变量,分别编成有刻度的直线(或曲线),并把它们按一定的规律排列在一起的一种图形,可以用来解函数式中的未知量.比如想知道10摄氏度相当于多少华氏度,我们可根据摄氏温度与华氏温度之间的关系: 得出,当 时, .但是如果你的温度计上有华氏温标刻度,就可以从温度计上直接读出答案,这种根据特制的线条进行计算的方法就是图算法. 再看一个例子:设有两只电阻,分别为5千欧和7.5千欧,问并联后的电阻值是多少? 我们可以根据公式 求得 的值,也可以设计一种图算法直接得出结果:我们先来画出一个 的角,再画一条角平分线,在角的两边及角平分线上用同样的单位长度进行刻度,这样就制好了一张算图.我们只要把角的两边刻着7.5和5的两点连成一条直线,这条直线与角平分线的交点的刻度值就是并联后的电阻值. 图算法得出的数据大多是近似值,但在大多数情况下是够用的,那些需要用同一类公式进行计算的测量制图人员,往往更能体会到它的优越性. |
任务:
(1)请根据以上材料简要说明图算法的优越性;
(2)请用以下两种方法验证第二个例子中图算法的正确性:
①用公式 计算:当 , 时, 的值为多少;
②如图,在 中, , 是 的角平分线, , ,用你所学的几何知识求线段 的长.
如图, 为线段 上一点,以 为圆心, 长为半径的 交 于点 ,点 在 上,连接 ,满足 .
(1)求证: 是 的切线;
(2)若 ,求 的值.
如图,在 中, ,以 的边 为直径作 ,交 于点 ,过点 作 ,垂足为点 .
(1)试证明 是 的切线;
(2)若 的半径为5, ,求此时 的长.
如图, 是 的平分线,点 在 上,以 为直径的 交 于点 ,过点 作 的垂线,垂足为点 ,交 于点 .
(1)求证:直线 是 的切线;
(2)若 ,设 的半径为 ,求 的长度.