已知点 是正方形 对角线 的中点.
(1)如图1,若点 是 的中点,点 是 上一点,且使得 ,过点 作 ,交 于点 ,交 于点 .求证:
① ; ②点 是 的中点;
(2)如图2,若点 是 上一点,点 是 上一点,且使 ,请判断 的形状,并说明理由;
(3)如图3,若 是 上的动点(不与 , 重合),连接 ,过 点作 ,交 于点 ,当 时,请猜想 的值(请直接写出结论).

如图,已知 是 的直径, 与 相切于 , .
(1)求证: 是 的平分线;
(2)若 , 的半径 ,求 的长.

如图, 是 的直径, 是 的切线,切点为 , 是 上(除 点外)的任意一点,连接 交 于点 ,过点 作 交 的延长线于点 ,连接 并延长交 于点 .
(1)求证: ;
(2)若 ,求 的长度.

已知四边形ABCD中, ,连接AC,过点A作 ,且使 ,连接BE,过A作 于H交BE于F.
(1)如图1,当E在CD的延长线上时,求证: ; ;
(2)如图2,当E不在CD的延长线上时,BF=EF还成立吗?请证明你的结论.

如图,已知⊙O是△ABC的外接圆,AD是⊙O的直径,且 ,延长AD到E,且有 .
(1)求证:BE是⊙O的切线;
(2)若 , ,求圆的直径AD及切线BE的长.

如图,在△ ABC中,点 D是 AB边上的一点.
(1)请用尺规作图法,在△ ABC内,求作∠ ADE,使∠ ADE=∠ B, DE交 AC于 E;(不要求写作法,保留作图痕迹)
(2)在(1)的条件下,若 =2,求 的值.

如图,在 中, , , , 为 边上的动点(与 、 不重合), ,交 于点 ,连接 ,设 , 的面积为 .
(1)用含 的代数式表示 的长;
(2)求 与 的函数表达式,并求当 随 增大而减小时 的取值范围.

如图,已知 , 是 的平分线, 是射线 上一点, .动点 从点 出发,以 的速度沿 水平向左作匀速运动,与此同时,动点 从点 出发,也以 的速度沿 竖直向上作匀速运动.连接 ,交 于点 .经过 、 、 三点作圆,交 于点 ,连接 、 .设运动时间为 ,其中 .
(1)求 的值;
(2)是否存在实数 ,使得线段 的长度最大?若存在,求出 的值;若不存在,说明理由.
(3)求四边形 的面积.

如图1,平面直角坐标系 中,等腰 的底边 在 轴上, ,顶点 在 的正半轴上, ,一动点 从 出发,以每秒1个单位的速度沿 向左运动,到达 的中点停止.另一动点 从点 出发,以相同的速度沿 向左运动,到达点 停止.已知点 、 同时出发,以 为边作正方形 ,使正方形 和 在 的同侧,设运动的时间为 秒 .
(1)当点 落在 边上时,求 的值;
(2)设正方形 与 重叠面积为 ,请问是否存在 值,使得 ?若存在,求出 值;若不存在,请说明理由;
(3)如图2,取 的中点 ,连结 ,当点 、 开始运动时,点 从点 出发,以每秒 个单位的速度沿 运动,到达点 停止运动.请问在点 的整个运动过程中,点 可能在正方形 内(含边界)吗?如果可能,求出点 在正方形 内(含边界)的时长;若不可能,请说明理由.

已知 是 斜边 的中点, , ,过点 作 使 , ,连接 并延长 到 ,使 ,连接 , , ,设 与 交于 , 与 交于 .
(1)如图1,当 , , 共线时,求证:
① ;
② ;
(2)如图2,当 , , 不共线时,连接 ,求证: .

如图,正方形 的边 在正方形 的边 上,连接 ,过点 作 ,交 于点 .连接 , ,其中 交 于点 .
(1)求证: 为等腰直角三角形.
(2)若 , ,求 的长.

如图,四边形 是正方形, 是等腰直角三角形,点 在 上,且 , ,垂足为点 .
(1)试判断 与 是否相等?并给出证明;
(2)若点 为 的中点, 与 垂直吗?若垂直,给出证明;若不垂直,说明理由.

(1)如图1, 是正方形 边 上的一点,连接 、 ,将 绕点 逆时针旋转 ,旋转后角的两边分别与射线 交于点 和点 .
①线段 和 的数量关系是 ;
②写出线段 , 和 之间的数量关系.
(2)当四边形 为菱形, ,点 是菱形 边 所在直线上的一点,连接 、 ,将 绕点 逆时针旋转 ,旋转后角的两边分别与射线 交于点 和点 .
①如图2,点 在线段 上时,请探究线段 、 和 之间的数量关系,写出结论并给出证明;
②如图3,点 在线段 的延长线上时, 交射线 于点 ,若 , ,直接写出线段 的长度.

在矩形 中,连结 ,点 从点 出发,以每秒1个单位的速度沿着 的路径运动,运动时间为 (秒 .过点 作 于点 ,在矩形 的内部作正方形 .
(1)如图,当 时,
①若点 在 的内部,连结 、 ,求证: ;
②当 时,设正方形 与 的重叠部分面积为 ,求 与 的函数关系式;
(2)当 , 时,若直线 将矩形 的面积分成 两部分,求 的值.
