初中数学

问题:如图,在 ABCD 中, AB = 8 AD = 5 DAB ABC 的平分线 AE BF 分别与直线 CD 交于点 E F ,求 EF 的长.

答案: EF = 2

探究:(1)把"问题"中的条件" AB = 8 "去掉,其余条件不变.

①当点 E 与点 F 重合时,求 AB 的长;

②当点 E 与点 C 重合时,求 EF 的长.

(2)把"问题"中的条件" AB = 8 AD = 5 "去掉,其余条件不变,当点 C D E F 相邻两点间的距离相等时,求 AD AB 的值.

来源:2021年浙江省绍兴市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

小丽在"红色研学"活动中深受革命先烈事迹的鼓舞,用正方形纸片制作成图1的七巧板,设计拼成图2的"奔跑者"形象来激励自己.已知图1正方形纸片的边长为4,图2中 FM = 2 EM ,则"奔跑者"两脚之间的跨度,即 AB CD 之间的距离是   

来源:2021年浙江省丽水市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图,矩形 ABCD 中, AB = 5 BC = 4 ,点 E AB 边上一点, AE = 3 ,连接 DE ,点 F BC 延长线上一点,连接 AF ,且 F = 1 2 EDC ,则 CF =   

来源:2021年辽宁省营口市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

如图,为了测量山坡的护坡石坝高,把一根长为 4 . 5 m 的竹竿 AC 斜靠在石坝旁,量出竿上 AD 长为 1 m 时,它离地面的高度 DE 0 . 6 m ,则坝高 CF    m

来源:2021年吉林省中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图,在平行四边形 ABCD 中, AB = 3 ,点 E 为线段 AB 的三等分点(靠近点 A ) ,点 F 为线段 CD 的三等分点(靠近点 C ) ,且 CE AB .将 ΔBCE 沿 CE 对折, BC 边与 AD 边交于点 G ,且 DC = DG

(1)证明:四边形 AECF 为矩形;

(2)求四边形 AECG 的面积.

来源:2021年黑龙江省大庆市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AB = 6 AD = 8 ,将此矩形折叠,使点 C 与点 A 重合,点 D 落在点 D ' 处,折痕为 EF ,则 AD ' 的长为    DD ' 的长为   

来源:2021年海南省中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, C = 90 ° AB = 5 ,点 O AB 上, OB = 2 ,以 OB 为半径的 O AC 相切于点 D ,交 BC 于点 E ,则 CE 的长为 (    )

A.

1 2

B.

2 3

C.

2 2

D.

1

来源:2021年广西贺州市中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

如图,已知线段 MN = a AR AK ,垂足为 A

(1)求作四边形 ABCD ,使得点 B D 分别在射线 AK AR 上,且 AB = BC = a ABC = 60 ° CD / / AB ;(要求:尺规作图,不写作法,保留作图痕迹)

(2)设 P Q 分别为(1)中四边形 ABCD 的边 AB CD 的中点,求证:直线 AD BC PQ 相交于同一点.

来源:2021年福建省中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ AOB 中, AOB = 90 ° OA = 3 OB = 4 ,以点 O 为圆心,2为半径的圆与 OB 交于点 C ,过点 C CD OB AB 于点 D ,点 P 是边 OA 上的动点.当 PC + PD 最小时, OP 的长为 (    )

A. 1 2 B. 3 4 C.1D. 3 2

来源:2020年山东省潍坊市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,经过原点 O 的直线与反比例函数 y = a x ( a > 0 ) 的图象交于 A D 两点(点 A 在第一象限),点 B C E 在反比例函数 y = b x ( b < 0 ) 的图象上, AB / / y 轴, AE / / CD / / x 轴,五边形 ABCDE 的面积为56,四边形 ABCD 的面积为32,则 a - b 的值为   b a 的值为  

来源:2020年浙江省宁波市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为 AC BD (点 A 与点 B 重合),点 O 是夹子转轴位置, OE AC 于点 E OF BD 于点 F OE = OF = 1 cm AC = BD = 6 cm CE = DF CE : AE = 2 : 3 .按图示方式用手指按夹子,夹子两边绕点 O 转动.

(1)当 E F 两点的距离最大时,以点 A B C D 为顶点的四边形的周长是   cm

(2)当夹子的开口最大(即点 C 与点 D 重合)时, A B 两点的距离为   cm

来源:2020年浙江省金华市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图, ΔABC 中, AB = AC O ΔABC 的外接圆, BO 的延长线交边 AC 于点 D

[小题1]求证: BAC = 2 ABD

[小题2]当 ΔBCD 是等腰三角形时,求 BCD 的大小;

[小题3]当 AD = 2 CD = 3 时,求边 BC 的长.

来源:2020年上海市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

已知:如图,在菱形 ABCD 中,点 E F 分别在边 BC CD 上, BE = FD AF 的延长线交 BC 的延长线于点 H AE 的延长线交 DC 的延长线于点 G

[小题1]求证: ΔAFD ΔGAD

[小题2]如果 D F 2 = CF · CD ,求证: BE = CH

来源:2020年上海市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ACB = 90 ° AC = 3 BC = 4 CD AB ,垂足为 D E BC 的中点, AE CD 交于点 F ,则 DF 的长为  

来源:2020年山西省中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图, ΔABC 中, ACB = 90 ° sin A = 5 13 AC = 12 ,将 ΔABC 绕点 C 顺时针旋转 90 ° 得到△ A ' B ' C P 为线段 A ' B ' 上的动点, 以点 P 为圆心, PA ' 长为半径作 P ,当 P ΔABC 的边相切时, P 的半径为  

来源:2018年江苏省泰州市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

初中数学平行线分线段成比例试题