初中数学

问题:如图,在 ABCD 中, AB = 8 AD = 5 DAB ABC 的平分线 AE BF 分别与直线 CD 交于点 E F ,求 EF 的长.

答案: EF = 2

探究:(1)把"问题"中的条件" AB = 8 "去掉,其余条件不变.

①当点 E 与点 F 重合时,求 AB 的长;

②当点 E 与点 C 重合时,求 EF 的长.

(2)把"问题"中的条件" AB = 8 AD = 5 "去掉,其余条件不变,当点 C D E F 相邻两点间的距离相等时,求 AD AB 的值.

来源:2021年浙江省绍兴市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,矩形 ABCD 中, AB = 5 BC = 4 ,点 E AB 边上一点, AE = 3 ,连接 DE ,点 F BC 延长线上一点,连接 AF ,且 F = 1 2 EDC ,则 CF =   

来源:2021年辽宁省营口市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AB = 6 AD = 8 ,将此矩形折叠,使点 C 与点 A 重合,点 D 落在点 D ' 处,折痕为 EF ,则 AD ' 的长为    DD ' 的长为   

来源:2021年海南省中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

如图, ΔABC 中, AB = AC O ΔABC 的外接圆, BO 的延长线交边 AC 于点 D

[小题1]求证: BAC = 2 ABD

[小题2]当 ΔBCD 是等腰三角形时,求 BCD 的大小;

[小题3]当 AD = 2 CD = 3 时,求边 BC 的长.

来源:2020年上海市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

已知:如图,在菱形 ABCD 中,点 E F 分别在边 BC CD 上, BE = FD AF 的延长线交 BC 的延长线于点 H AE 的延长线交 DC 的延长线于点 G

[小题1]求证: ΔAFD ΔGAD

[小题2]如果 D F 2 = CF · CD ,求证: BE = CH

来源:2020年上海市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

在数学兴趣小组活动中,小亮进行数学探究活动. ΔABC 是边长为2的等边三角形, E AC 上一点,小亮以 BE 为边向 BE 的右侧作等边三角形 BEF ,连接 CF

(1)如图1,当点 E 在线段 AC 上时, EF BC 相交于点 D ,小亮发现有两个三角形全等,请你找出来,并证明.

(2)当点 E 在线段 AC 上运动时,点 F 也随着运动,若四边形 ABFC 的面积为 7 4 3 ,求 AE 的长.

(3)如图2,当点 E AC 的延长线上运动时, CF BE 相交于点 D ,请你探求 ΔECD 的面积 S 1 ΔDBF 的面积 S 2 之间的数量关系.并说明理由.

(4)如图2,当 ΔECD 的面积 S 1 = 3 6 时,求 AE 的长.

来源:2018年江苏省连云港市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图, Rt Δ OAB 的直角边 OA x 轴上,顶点 B 的坐标为 ( 6 , 8 ) ,直线 CD AB 于点 D ( 6 , 3 ) ,交 x 轴于点 C ( 12 , 0 )

(1)求直线 CD 的函数表达式;

(2)动点 P x 轴上从点 ( 10 , 0 ) 出发,以每秒1个单位的速度向 x 轴正方向运动,过点 P 作直线 l 垂直于 x 轴,设运动时间为 t

①点 P 在运动过程中,是否存在某个位置,使得 PDA = B ,若存在,请求出点 P 的坐标;若不存在,请说明理由;

②请探索当 t 为何值时,在直线 l 上存在点 M ,在直线 CD 上存在点 Q ,使得以 OB 为一边, O B M Q 为顶点的四边形为菱形,并求出此时 t 的值.

来源:2018年浙江省衢州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,平面直角坐标系中, O 为原点,点 A B 分别在 y 轴、 x 轴的正半轴上. ΔAOB 的两条外角平分线交于点 P P 在反比例函数 y = 9 x 的图象上. PA 的延长线交 x 轴于点 C PB 的延长线交 y 轴于点 D ,连接 CD

(1)求 P 的度数及点 P 的坐标;

(2)求 ΔOCD 的面积;

(3) ΔAOB 的面积是否存在最大值?若存在,求出最大面积;若不存在,请说明理由.

来源:2019年江苏省徐州市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

已知点 O 是正方形 ABCD 对角线 BD 的中点.

(1)如图1,若点 E OD 的中点,点 F AB 上一点,且使得 CEF = 90 ° ,过点 E ME / / AD ,交 AB 于点 M ,交 CD 于点 N .求证:

AEM = FEM ②点 F AB 的中点;

(2)如图2,若点 E OD 上一点,点 F AB 上一点,且使 DE DO = AF AB = 1 3 ,请判断 ΔEFC 的形状,并说明理由;

(3)如图3,若 E OD 上的动点(不与 O D 重合),连接 CE ,过 E 点作 EF CE ,交 AB 于点 F ,当 DE DB = m n 时,请猜想 AF AB 的值(请直接写出结论).

来源:2017年湖南省永州市中考数学试卷
  • 更新:2021-05-06
  • 题型:未知
  • 难度:未知

如图,已知 MON = 90 ° OT MON 的平分线, A 是射线 OM 上一点, OA = 8 cm .动点 P 从点 A 出发,以 1 cm / s 的速度沿 AO 水平向左作匀速运动,与此同时,动点 Q 从点 O 出发,也以 1 cm / s 的速度沿 ON 竖直向上作匀速运动.连接 PQ ,交 OT 于点 B .经过 O P Q 三点作圆,交 OT 于点 C ,连接 PC QC .设运动时间为 t ( s ) ,其中 0 < t < 8

(1)求 OP + OQ 的值;

(2)是否存在实数 t ,使得线段 OB 的长度最大?若存在,求出 t 的值;若不存在,说明理由.

(3)求四边形 OPCQ 的面积.

来源:2020年江苏省苏州市中考数学试卷
  • 更新:2021-01-08
  • 题型:未知
  • 难度:未知

如图1,平面直角坐标系 xOy 中,等腰 ΔABC 的底边 BC x 轴上, BC = 8 ,顶点 A y 的正半轴上, OA = 2 ,一动点 E ( 3 , 0 ) 出发,以每秒1个单位的速度沿 CB 向左运动,到达 OB 的中点停止.另一动点 F 从点 C 出发,以相同的速度沿 CB 向左运动,到达点 O 停止.已知点 E F 同时出发,以 EF 为边作正方形 EFGH ,使正方形 EFGH ΔABC BC 的同侧,设运动的时间为 t ( t 0 )

(1)当点 H 落在 AC 边上时,求 t 的值;

(2)设正方形 EFGH ΔABC 重叠面积为 S ,请问是否存在 t 值,使得 S = 91 36 ?若存在,求出 t 值;若不存在,请说明理由;

(3)如图2,取 AC 的中点 D ,连结 OD ,当点 E F 开始运动时,点 M 从点 O 出发,以每秒 2 5 个单位的速度沿 OD - DC - CD - DO 运动,到达点 O 停止运动.请问在点 E 的整个运动过程中,点 M 可能在正方形 EFGH 内(含边界)吗?如果可能,求出点 M 在正方形 EFGH 内(含边界)的时长;若不可能,请说明理由.

来源:2020年湖南省衡阳市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

已知 D Rt Δ ABC 斜边 AB 的中点, ACB = 90 ° ABC = 30 ° ,过点 D Rt Δ DEF 使 DEF = 90 ° DFE = 30 ° ,连接 CE 并延长 CE P ,使 EP = CE ,连接 BE FP BP ,设 BC DE 交于 M PB EF 交于 N

(1)如图1,当 D B F 共线时,求证:

EB = EP

EFP = 30 °

(2)如图2,当 D B F 不共线时,连接 BF ,求证: BFD + EFP = 30 °

来源:2020年湖南省常德市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图,四边形是正方形,是等腰直角三角形,点上,且,垂足为点

(1)试判断是否相等?并给出证明;

(2)若点的中点,垂直吗?若垂直,给出证明;若不垂直,说明理由.

来源:2019年山东省泰安市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可近似地用二次函数y=﹣200x2+400x刻画;1.5小时后(包括1.5小时)y与x可近似地用反比例函数y=(k>0)刻画(如图所示).

(1)根据上述数学模型计算:
①喝酒后几时血液中的酒精含量达到最大值?最大值为多少?
②当x=5时,y=45,求k的值.
(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,边长为1的正方形ABCD中,点E在CB延长线上,连接ED交AB于点F,AF=,EC=.则在下面函数图象中,大致能反应之间函数关系的是

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学平行线分线段成比例试题