初中数学

问题:如图,在 ABCD 中, AB = 8 AD = 5 DAB ABC 的平分线 AE BF 分别与直线 CD 交于点 E F ,求 EF 的长.

答案: EF = 2

探究:(1)把"问题"中的条件" AB = 8 "去掉,其余条件不变.

①当点 E 与点 F 重合时,求 AB 的长;

②当点 E 与点 C 重合时,求 EF 的长.

(2)把"问题"中的条件" AB = 8 AD = 5 "去掉,其余条件不变,当点 C D E F 相邻两点间的距离相等时,求 AD AB 的值.

来源:2021年浙江省绍兴市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,在平行四边形 ABCD 中, AB = 3 ,点 E 为线段 AB 的三等分点(靠近点 A ) ,点 F 为线段 CD 的三等分点(靠近点 C ) ,且 CE AB .将 ΔBCE 沿 CE 对折, BC 边与 AD 边交于点 G ,且 DC = DG

(1)证明:四边形 AECF 为矩形;

(2)求四边形 AECG 的面积.

来源:2021年黑龙江省大庆市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

如图,已知线段 MN = a AR AK ,垂足为 A

(1)求作四边形 ABCD ,使得点 B D 分别在射线 AK AR 上,且 AB = BC = a ABC = 60 ° CD / / AB ;(要求:尺规作图,不写作法,保留作图痕迹)

(2)设 P Q 分别为(1)中四边形 ABCD 的边 AB CD 的中点,求证:直线 AD BC PQ 相交于同一点.

来源:2021年福建省中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

如图, ΔABC 中, AB = AC O ΔABC 的外接圆, BO 的延长线交边 AC 于点 D

[小题1]求证: BAC = 2 ABD

[小题2]当 ΔBCD 是等腰三角形时,求 BCD 的大小;

[小题3]当 AD = 2 CD = 3 时,求边 BC 的长.

来源:2020年上海市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

已知:如图,在菱形 ABCD 中,点 E F 分别在边 BC CD 上, BE = FD AF 的延长线交 BC 的延长线于点 H AE 的延长线交 DC 的延长线于点 G

[小题1]求证: ΔAFD ΔGAD

[小题2]如果 D F 2 = CF · CD ,求证: BE = CH

来源:2020年上海市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

问题1:如图①,在 ΔABC 中, AB = 4 D AB 上一点(不与 A B 重合), DE / / BC ,交 AC 于点 E ,连接 CD .设 ΔABC 的面积为 S ΔDEC 的面积为 S '

(1)当 AD = 3 时, S ' S =   

(2)设 AD = m ,请你用含字母 m 的代数式表示 S ' S

问题2:如图②,在四边形 ABCD 中, AB = 4 AD / / BC AD = 1 2 BC E AB 上一点(不与 A B 重合), EF / / BC ,交 CD 于点 F ,连接 CE .设 AE = n ,四边形 ABCD 的面积为 S ΔEFC 的面积为 S ' .请你利用问题1的解法或结论,用含字母 n 的代数式表示 S ' S

来源:2018年江苏省苏州市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

在数学兴趣小组活动中,小亮进行数学探究活动. ΔABC 是边长为2的等边三角形, E AC 上一点,小亮以 BE 为边向 BE 的右侧作等边三角形 BEF ,连接 CF

(1)如图1,当点 E 在线段 AC 上时, EF BC 相交于点 D ,小亮发现有两个三角形全等,请你找出来,并证明.

(2)当点 E 在线段 AC 上运动时,点 F 也随着运动,若四边形 ABFC 的面积为 7 4 3 ,求 AE 的长.

(3)如图2,当点 E AC 的延长线上运动时, CF BE 相交于点 D ,请你探求 ΔECD 的面积 S 1 ΔDBF 的面积 S 2 之间的数量关系.并说明理由.

(4)如图2,当 ΔECD 的面积 S 1 = 3 6 时,求 AE 的长.

来源:2018年江苏省连云港市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图, Rt Δ OAB 的直角边 OA x 轴上,顶点 B 的坐标为 ( 6 , 8 ) ,直线 CD AB 于点 D ( 6 , 3 ) ,交 x 轴于点 C ( 12 , 0 )

(1)求直线 CD 的函数表达式;

(2)动点 P x 轴上从点 ( 10 , 0 ) 出发,以每秒1个单位的速度向 x 轴正方向运动,过点 P 作直线 l 垂直于 x 轴,设运动时间为 t

①点 P 在运动过程中,是否存在某个位置,使得 PDA = B ,若存在,请求出点 P 的坐标;若不存在,请说明理由;

②请探索当 t 为何值时,在直线 l 上存在点 M ,在直线 CD 上存在点 Q ,使得以 OB 为一边, O B M Q 为顶点的四边形为菱形,并求出此时 t 的值.

来源:2018年浙江省衢州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图, AM ΔABC 的中线, D 是线段 AM 上一点(不与点 A 重合). DE / / AB AC 于点 F CE / / AM ,连接 AE

(1)如图1,当点 D M 重合时,求证:四边形 ABDE 是平行四边形;

(2)如图2,当点 D 不与 M 重合时,(1)中的结论还成立吗?请说明理由.

(3)如图3,延长 BD AC 于点 H ,若 BH AC ,且 BH = AM

①求 CAM 的度数;

②当 FH = 3 DM = 4 时,求 DH 的长.

来源:2017年浙江省嘉兴市(舟山市)中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,已知 AB CD O 的直径,过点 C O 的切线交 AB 的延长线于点 P O 的弦 DE AB 于点 F ,且 DF = EF

(1)求证: C O 2 = OF · OP

(2)连接 EB CD 于点 G ,过点 G GH AB 于点 H ,若 PC = 4 2 PB = 4 ,求 GH 的长.

来源:2018年四川省泸州市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

在现实生活中,我们经常会看到许多“标准”的矩形,如我们的课本封面、 A 4 的打印纸等,其实这些矩形的长与宽之比都为 2 : 1 ,我们不妨就把这样的矩形称为“标准矩形”,在“标准矩形” ABCD 中, P DC 边上一定点,且 CP = BC ,如图所示.

(1)如图①,求证: BA = BP

(2)如图②,点 Q DC 上,且 DQ = CP ,若 G BC 边上一动点,当 ΔAGQ 的周长最小时,求 CG GB 的值;

(3)如图③,已知 AD = 1 ,在(2)的条件下,连接 AG 并延长交 DC 的延长线于点 F ,连接 BF T BF 的中点, M N 分别为线段 PF AB 上的动点,且始终保持 PM = BN ,请证明: ΔMNT 的面积 S 为定值,并求出这个定值.

来源:2017年湖北省黄石市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

已知正方形 ABCD P 为射线 AB 上的一点,以 BP 为边作正方形 BPEF ,使点 F 在线段 CB 的延长线上,连接 EA EC

(1)如图1,若点 P 在线段 AB 的延长线上,求证: EA = EC

(2)如图2,若点 P 在线段 AB 的中点,连接 AC ,判断 ΔACE 的形状,并说明理由;

(3)如图3,若点 P 在线段 AB 上,连接 AC ,当 EP 平分 AEC 时,设 AB = a BP = b ,求 a : b AEC 的度数.

来源:2017年山东省枣庄市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图,菱形 ABCD 中,对角线 AC BD 相交于点 O AC = 12 cm BD = 16 cm ,动点 N 从点 D 出发,沿线段 DB 2 cm / s 的速度向点 B 运动,同时动点 M 从点 B 出发,沿线段 BA 1 cm / s 的速度向点 A 运动,当其中一个动点停止运动时另一个动点也随之停止.设运动时间为 t ( s ) ( t > 0 ) ,以点 M 为圆心, MB 长为半径的 M 与射线 BA ,线段 BD 分别交于点 E F ,连接 EN

(1)求 BF 的长(用含有 t 的代数式表示),并求出 t 的取值范围;

(2)当 t 为何值时,线段 EN M 相切?

(3)若 M 与线段 EN 只有一个公共点,求 t 的取值范围.

来源:2017年山东省烟台市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AC = BC ,点 F 从点 B 向点 C 运动,点 E 从点 A 沿射线 CA 方向运动,且 BF = AE ,连接 EF AB D

(1)如图1,当 AB = BC 时,求证: AB = 2 AD + BF

(2)如图2,当 AB = 2 3 BC 时,① AD = 6 BF = 15 2 ,则 AB =   

②过点 F FP AB 于点 P ,探究线段 AB AD FP 之间的数量关系,直接写出结论,不需证明.

来源:2016年辽宁省鞍山市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,四边形 OABC 的顶点 O 是坐标原点,点 A 的坐标为 ( 6 , 0 ) ,点 B 的坐标为 ( 0 , 8 ) ,点 C 的坐标为 ( 2 5 4 ) ,点 M N 分别为四边形 OABC 边上的动点,动点 M 从点 O 开始,以每秒1个单位长度的速度沿 O A B 路线向终点 B 匀速运动,动点 N O 点开始,以每秒两个单位长度的速度沿 O C B A 路线向终点 A 匀速运动,点 M N 同时从 O 点出发,当其中一点到达终点后,另一点也随之停止运动,设动点运动的时间 t ( t > 0 ) ΔOMN 的面积为 S

(1)填空: AB 的长是   BC 的长是  

(2)当 t = 3 时,求 S 的值;

(3)当 3 < t < 6 时,设点 N 的纵坐标为 y ,求 y t 的函数关系式;

(4)若 S = 48 5 ,请直接写出此时 t 的值.

来源:2017年辽宁省沈阳市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

初中数学平行线分线段成比例解答题