如图,已知正方形 边长为1, 为 边上一点,以点 为中心,将 按逆时针方向旋转得 ,连接 ,分别交 , 于点 , .若 ,则 .
在等腰 中, ,点 是 边上一点(不与点 、 重合),连结 .
(1)如图1,若 ,点 关于直线 的对称点为点 ,连结 , ,则 ;
(2)若 ,将线段 绕点 顺时针旋转 得到线段 ,连结 .
①在图2中补全图形;
②探究 与 的数量关系,并证明;
(3)如图3,若 ,且 .试探究 、 、 之间满足的数量关系,并证明.
在 中, , , ,将 绕点 顺时针旋转得到△ ,其中点 , 的对应点分别为点 , .
(1)如图1,当点 落在 的延长线上时,求 的长;
(2)如图2,当点 落在 的延长线上时,连接 ,交 于点 ,求 的长;
(3)如图3,连接 , ,直线 交 于点 ,点 为 的中点,连接 .在旋转过程中, 是否存在最小值?若存在,求出 的最小值;若不存在,请说明理由.
有公共顶点 的正方形 与正方形 按如图1所示放置,点 , 分别在边 和 上,连接 , , 是 的中点,连接 交 于点 .
【观察猜想】
(1)线段 与 之间的数量关系是 ,位置关系是 ;
【探究证明】
(2)将图1中的正方形 绕点 顺时针旋转 ,点 恰好落在边 上,如图2,其他条件不变,线段 与 之间的关系是否仍然成立?并说明理由.
如图,在矩形 中, , ,点 在线段 上运动(含 、 两点),连接 ,以点 为中心,将线段 逆时针旋转 到 ,连接 ,则线段 的最小值为
A. |
|
B. |
|
C. |
|
D. |
3 |
在 中, , 平分 ,交对角线 于点 ,交射线 于点 ,将线段 绕点 顺时针旋转 得线段 .
(1)如图1,当 时,连接 ,请直接写出线段 和线段 的数量关系;
(2)如图2,当 时,过点 作 于点,连接 ,请写出线段 , , 之间的数量关系,并说明理由;
(3)当 时,连接 ,若 ,请直接写出 与 面积的比值.
如图,射线 , 互相垂直, ,点 位于射线 的上方,且在线段 的垂直平分线 上,连接 , .把线段 绕点 按逆时针方向旋转得到对应线段 ,若点 恰好落在射线 上,则点 到射线 的距离 .
如图,将 绕点 逆时针旋转到 的位置,使点 落在 上, 与 交于点 .若 , , ,则 的长为 .
已知等边三角形 ,过 点作 的垂线 ,点 为 上一动点(不与点 重合),连接 ,把线段 绕点 逆时针方向旋转 得到 ,连 .
(1)如图1,直接写出线段 与 的数量关系;
(2)如图2,当点 、 在 同侧且 时,求证:直线 垂直平分线段 ;
(3)如图3,若等边三角形 的边长为4,点 、 分别位于直线 异侧,且 的面积等于 ,求线段 的长度.
如图,在正方形 中,点 、 分别在边 、 上,且 , 交 于 点, 交 于 点.
(1)若正方形的边长为2,则 的周长是 .
(2)下列结论:① ;②若 是 的中点,则 ;③连接 ,则 为等腰直角三角形.其中正确结论的序号是 (把你认为所有正确的都填上).
如图,在 中, , , 为 的中点,点 在 上,以点 为中心,将线段 顺时针旋转 得到线段 ,连接 , .
(1)比较 与 的大小;用等式表示线段 , , 之间的数量关系,并证明;
(2)过点 作 的垂线,交 于点 ,用等式表示线段 与 的数量关系,并证明.
发现规律
(1)如图①, 与 都是等边三角形,直线 , 交于点 .直线 , 交于点 .求 的度数.
(2)已知: 与 的位置如图②所示,直线 , 交于点 .直线 , 交于点 .若 , ,求 的度数.
应用结论
(3)如图③,在平面直角坐标系中,点 的坐标为 ,点 的坐标为 , 为 轴上一动点,连接 .将线段 绕点 逆时针旋转 得到线段 ,连接 , .求线段 长度的最小值.
如图1,在等腰三角形 中, , ,点 、 分别在边 、 上, ,连接 ,点 、 、 分别为 、 、 的中点.
(1)观察猜想.
图1中,线段 、 的数量关系是 , 的大小为 .
(2)探究证明
把 绕点 顺时针方向旋转到如图2所示的位置,连接 、 、 ,判断 的形状,并说明理由;
(3)拓展延伸
把 绕点 在平面内自由旋转,若 , ,请求出 面积的最大值.
如图1,矩形 中, , , 中, , , , 的延长线相交于点 ,且 , , .将 绕点 逆时针旋转 得到△ .
(1)当 时,求点 到直线 的距离.
(2)在图1中,取 的中点 ,连结 ,如图2.
①当 与矩形 的一条边平行时,求点 到直线 的距离.
②当线段 与矩形 的边有且只有一个交点时,求该交点到直线 的距离的取值范围.