如图1,在等腰三角形 ABC 中, ∠ A = 120 ° , AB = AC ,点 D 、 E 分别在边 AB 、 AC 上, AD = AE ,连接 BE ,点 M 、 N 、 P 分别为 DE 、 BE 、 BC 的中点.
(1)观察猜想.
图1中,线段 NM 、 NP 的数量关系是 , ∠ MNP 的大小为 .
(2)探究证明
把 ΔADE 绕点 A 顺时针方向旋转到如图2所示的位置,连接 MP 、 BD 、 CE ,判断 ΔMNP 的形状,并说明理由;
(3)拓展延伸
把 ΔADE 绕点 A 在平面内自由旋转,若 AD = 1 , AB = 3 ,请求出 ΔMNP 面积的最大值.
在平面直角坐标系中,一个二次函数的图象经过点A(1,0)、B(3,0)两点. (1)写出这个二次函数的对称轴; (2)设这个二次函数的顶点为D,与y轴交于点C,它的对称轴与x轴交于点E,连接AD、DE和DB,当△AOC与△DEB相似时,求这个二次函数的表达式。 [提示:如果一个二次函数的图象与x轴的交点为A,那么它的表达式可表示为:]
如图,直线与⊙O相切于点D,过圆心O作EF∥交⊙O于E、F两点,点A是⊙O上一点,连接AE,AF,并分别延长交直线于B、C两点; (1)求证:∠ABC+∠ACB=90°; (2)若⊙O的半径,BD=12,求tan∠ACB的值.
甲、乙两人用手指玩游戏,规则如下:i)每次游戏时,两人同时随机地各伸出一根手指;ii)两人伸出的手指中,大拇指只胜食指,食指只胜中指,中指只胜无名指,无名指只胜小拇指,小拇指只胜大拇指,否则不分胜负,依据上述规则,当甲、乙两人同时随机地各伸出一根手指时, (1)求甲伸出小拇指取胜的概率; (2)求乙取胜的概率.
“五一节“期间,申老师一家自驾游去了离家170千米的某地,下面是分们离家的距离y (千米)与汽车行驶时间x(小时)之间的函数图象。 (1)求他们出发半小时时,离家多少千米? (2)求出AB段图象的函数表达式; (3)他们出发2小时时,离目的地还有多少千米?。
一天晚上,李明和张龙利用灯光下的影子来测量一路灯D的高度,如图,当李明走到点A处时,张龙测得李明直立身高AM与其影子长AE正好相等,接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m。已知李明直立时的身高为1.75m,求路灯的高CD的长.(结果精确到0.1m)