已知 内接于 , , ,点 是 上一点.
(Ⅰ)如图①,若 为 的直径,连接 ,求 和 的大小;
(Ⅱ)如图②,若 ,连接 ,过点作 的切线,与 的延长线交于点 ,求 的大小.
如图,在中,是斜边的中点,以为直径作圆交于点,延长至,使,连接、,交圆于点.
(1)判断四边形的形状,并说明理由;
(2)求证:;
(3)若,,求的长.
如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DC,DF.
(1)求 的度数;
(2)求证:DF是⊙O的切线;
(3)若 ,求 的值.
如图1,已知外一点向作切线,点为切点,连接并延长交于点,连接并延长交于点,过点作,分别交于点,交于点,连接.
(1)求证:;
(2)如图2,当时
①求的度数;
②连接,在上是否存在点使得四边形是菱形.若存在,请直接写出的值;若不存在,请说明理由.
如图所示,在Rt△ABC与Rt△OCD中, ,O为AB的中点.
(1)求证: .
(2)已知点E在AB上,且 .
(i)若 , ,求CE的长;
(ii)试判定CD与以A为圆心、AE为半径的⊙A的位置关系,并请说明理由.
如图,已知 、 两点的坐标分别为 、 ,点 、 分别是直线 和 轴上的动点, ,点 是线段 的中点,连接 交 轴于点 ,当 面积取得最小值时, 的值是
A. |
|
B. |
|
C. |
|
D. |
|
如图,在Rt△ ABC中,∠ C=90°,以 BC为直径的⊙ O交斜边 AB于点 M,若 H是 AC的中点,连接 MH.
(1)求证: MH为⊙ O的切线.
(2)若 ,求⊙ O的半径.
(3)在(2)的条件下分别过点 A、 B作⊙ O的切线,两切线交于点 D, AD与⊙ O相切于 N点,过 N点作 NQ⊥ BC,垂足为 E,且交⊙ O于 Q点,求线段 NQ的长度.
如图,在菱形中,连结、交于点,过点作于点,以点为圆心,为半径的半圆交于点.
①求证:是的切线.
②若且,求图中阴影部分的面积.
③在②的条件下,是线段上的一动点,当为何值时,的值最小,并求出最小值.
如图1,在△ ABC中, AB= AC,⊙ O是△ ABC的外接圆,过点 C作∠ BCD=∠ ACB交⊙ O于点 D,连接 AD交 BC于点 E,延长 DC至点 F,使 CF= AC,连接 AF.
(1)求证: ED= EC;
(2)求证: AF是⊙ O的切线;
(3)如图2,若点 G是△ ACD的内心, BC• BE=25,求 BG的长.
如图,四边形 ABCD中, AB= AD= CD,以 AB为直径的⊙ O经过点 C,连接 AC、 OD交于点 E.
(1)证明: OD∥ BC;
(2)若tan∠ ABC=2,证明: DA与⊙ O相切;
(3)在(2)条件下,连接 BD交⊙ O于点 F,连接 EF,若 BC=1,求 EF的长.
如图,是的直径,点为上一点,于点,交于点,点为的延长线上一点,的延长线与的延长线交于点,且,连结、、.
(1)求证:为的切线;
(2)过作于点,求证:;
(3)如果,,求的长.
如图,△ ABC内接于⊙ O, BC=2, AB= AC,点 D为 上的动点,且cos∠ ABC= .
(1)求 AB的长度;
(2)在点 D的运动过程中,弦 AD的延长线交 BC延长线于点 E,问 AD• AE的值是否变化?若不变,请求出 AD• AE的值;若变化,请说明理由;
(3)在点 D的运动过程中,过 A点作 AH⊥ BD,求证: BH= CD+ DH.
如图,在 中, ,点 在 上,以 为直径的 与边 相切于点 ,与边 相交于点 ,且 ,连接 并延长交 于点 ,连接 .
(1)求证:
① .
② 是 的切线.
(2)若 ,求图形中阴影部分的面积.
如图,以Rt△ ABC的直角边 AB为直径的⊙ O交斜边 AC于点 D,过点 D作⊙ O的切线与 BC交于点 E,弦 DM与 AB垂直,垂足为 H.
(1)求证: E为 BC的中点;
(2)若⊙ O的面积为12π,两个三角形△ AHD和△ BMH的外接圆面积之比为3,求△ DEC的内切圆面积 S 1和四边形 OBED的外接圆面积 S 2的比.