如图,以Rt△ ABC的直角边 AB为直径的⊙ O交斜边 AC于点 D,过点 D作⊙ O的切线与 BC交于点 E,弦 DM与 AB垂直,垂足为 H.
(1)求证: E为 BC的中点;
(2)若⊙ O的面积为12π,两个三角形△ AHD和△ BMH的外接圆面积之比为3,求△ DEC的内切圆面积 S 1和四边形 OBED的外接圆面积 S 2的比.
解方程 (1) (2)
计算 (1) (2)
把一副三角板的直角顶点O重叠在一起, (1)如图(1),当OB平分∠COD时,则∠AOD和∠BOC的和是多少度? (2)如图(2),当OB不平分∠COD时,则∠AOD和∠BOC的和是多少度? (3)当∠BOC的余角的4倍等于∠AOD,则∠BOC多少度?
如图,已知数轴上有A、B、C三点,分别表示有理数-26、-10、10,动点P从点A出发,以每秒1个单位的速度向终点C移动,当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,问当点Q从A点出发几秒钟时,点P和点Q相距2个单位长度? 直接写出此时点Q在数轴上表示的有理数.
有一些相同的房间需要粉刷墙面,一天3名一级技工去粉刷8个房间,结果其中有50墙面未来得及粉刷;同样时间内5名二级技工粉刷了10个房间之外,还多粉刷了另外的40墙面.每名一级技工比二级技工一天多粉刷10墙面,求每个房间需要粉刷的墙面面积.