如图,在边长为的正方形中剪去一个边长为的小正方形,把剩下的部分拼成一个梯形,请利用甲、乙两图验证我们本学期学过的一个乘法公式.
如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD. (1)试判断四边形OCED的形状,并说明理由; (2)若AB=6,BC=8,求四边形OCED的面积.
解方程:
计算:
(1)计算:(p-2010)0 +(sin60°)-1-︱tan30°-︱+. (2)先化简:;若结果等于,求出相应x的值.
如图,抛物线y = ax2 + bx + 4与x轴的两个交点分别为A(-4,0)、B(2,0),与y轴交于点C,顶点为D.E(1,2)为线段BC的中点,BC的垂直平分线与x轴、y轴分别交于F、G. (1)求抛物线的函数解析式,并写出顶点D的坐标; (2)在直线EF上求一点H,使△CDH的周长最小,并求出最小周长; (3)若点K在x轴上方的抛物线上运动,当K运动到什么位置时, △EFK的面积最大?并求出最大面积.