初中数学

如图,在矩形 ABCD 中,对角线相交于点 O M ΔBCD 的内切圆,切点分别为 N P Q DN = 4 BN = 6

(1)求 BC CD

(2)点 H 从点 A 出发,沿线段 AD 向点 D 以每秒3个单位长度的速度运动,当点 H 运动到点 D 时停止,过点 H HI / / BD AC 于点 I ,设运动时间为 t 秒.

①将 ΔAHI 沿 AC 翻折得△ AH ' I ,是否存在时刻 t ,使点 H ' 恰好落在边 BC 上?若存在,求 t 的值;若不存在,请说明理由;

②若点 F 为线段 CD 上的动点,当 ΔOFH 为正三角形时,求 t 的值.

来源:2020年四川省绵阳市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

结果如此巧合 !

下面是小颖对一道题目的解答.

题目:如图, Rt Δ ABC 的内切圆与斜边 AB 相切于点 D AD = 3 BD = 4 ,求 ΔABC 的面积.

解:设 ΔABC 的内切圆分别与 AC BC 相切于点 E F CE 的长为 x

根据切线长定理,得 AE = AD = 3 BF = BD = 4 CF = CE = x

根据勾股定理,得 ( x + 3 ) 2 + ( x + 4 ) 2 = ( 3 + 4 ) 2

整理,得 x 2 + 7 x = 12

所以 S ΔABC = 1 2 AC · BC

= 1 2 ( x + 3 ) ( x + 4 )

= 1 2 ( x 2 + 7 x + 12 )

= 1 2 × ( 12 + 12 )

= 12

小颖发现12恰好就是 3 × 4 ,即 ΔABC 的面积等于 AD BD 的积.这仅仅是巧合吗?

请你帮她完成下面的探索.

已知: ΔABC 的内切圆与 AB 相切于点 D AD = m BD = n

可以一般化吗?

(1)若 C = 90 ° ,求证: ΔABC 的面积等于 mn

倒过来思考呢?

(2)若 AC · BC = 2 mn ,求证 C = 90 °

改变一下条件

(3)若 C = 60 ° ,用 m n 表示 ΔABC 的面积.

来源:2018年江苏省南京市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

问题提出

(1)如图①,是等边三角形,,若点的内心,则的长为  

问题探究

(2)如图②,在矩形中,,如果点边上一点,且,那么边上是否存在一点,使得线段将矩形的面积平分?若存在,求出的长;若不存在,请说明理由.

问题解决

(3)某城市街角有一草坪,草坪是由草地和弦与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于(即每次喷灌时喷灌龙头由转到,然后再转回,这样往复喷灌.同时,再合理设计好喷灌龙头喷水的射程就可以了.

如图③,已测出的面积为;过弦的中点于点,又测得

请你根据以上信息,帮助王师傅计算喷灌龙头的射程至少多少米时,才能实现他的想法?为什么?(结果保留根号或精确到0.01米)

来源:2017年陕西省中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

如图,顶点为的抛物线轴交于两点,与轴交于点

(1)求这条抛物线对应的函数表达式;

(2)问在轴上是否存在一点,使得为直角三角形?若存在,求出点的坐标;若不存在,说明理由.

(3)若在第一象限的抛物线下方有一动点,满足,过轴于点,设的内心为,试求的最小值.

来源:2019年山东省淄博市中考数学试卷(a卷)
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,在直角三角形 ABC 中, ACB = 90 ° ,点 H ΔABC 的内心,

AH 的延长线和三角形 ABC 的外接圆 O 相交于点 D ,连接 DB

(1)求证: DH = DB

(2)过点 D BC 的平行线交 AC AB 的延长线分别于点 E F ,已知 CE = 1 ,圆 O 的直径为5.

①求证: EF 为圆 O 的切线;

②求 DF 的长.

来源:2018年四川省德阳市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AD 是边 BC 上的中线, BAD = CAD CE / / AD CE BA 的延长线于点 E BC = 8 AD = 3

(1)求 CE 的长;

(2)求证: ΔABC 为等腰三角形.

(3)求 ΔABC 的外接圆圆心 P 与内切圆圆心 Q 之间的距离.

来源:2018年湖南省长沙市中考数学试卷
  • 更新:2021-05-09
  • 题型:未知
  • 难度:未知

如图, AB O 的直径,且 AB = 4 ,点 C 在半圆上, OC AB ,垂足为点 O P 为半圆上任意一点(不与点 C 重合),过 P 点作 PE OC 于点 E ,设 ΔOPE 的内心为 M ,连接 OM PM

(1)求 OMP 的度数;

(2)当点 P 在半圆上从点 B 运动到点 A 时,求内心 M 所经过的路径长.

来源:2018年贵州省贵阳市中考数学试卷
  • 更新:2021-04-29
  • 题型:未知
  • 难度:未知

已知 ΔABC 的内切圆 O AB BC AC 分别相切于点 D E F ,若 EF ̂ = DE ̂ ,如图1.

(1)判断 ΔABC 的形状,并证明你的结论;

(2)设 AE DF 相交于点 M ,如图2, AF = 2 FC = 4 ,求 AM 的长.

来源:2017年广西百色市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

阅读下列材料并回答问题:

材料1:如果一个三角形的三边长分别为 a b c ,记 p = a + b + c 2 ,那么三角形的面积为 S = p ( p a ) ( p b ) ( p c )    

古希腊几何学家海伦 ( Heron ,约公元50年),在数学史上以解决几何测量问题而闻名.他在《度量》一书中,给出了公式①和它的证明,这一公式称海伦公式.

我国南宋数学家秦九韶(约 1202 1261 ) ,曾提出利用三角形的三边求面积的秦九韶公式: S = 1 4 [ a 2 b 2 ( a 2 + b 2 c 2 2 ) 2 ]     

下面我们对公式②进行变形: 1 4 [ a 2 b 2 ( a 2 + b 2 c 2 2 ) 2 ] = ( 1 2 ab ) 2 ( a 2 + b 2 c 2 4 ) 2 = ( 1 2 ab + a 2 + b 2 c 2 4 ) ( 1 2 ab a 2 + b 2 c 2 4 ) = 2 ab + a 2 + b 2 c 2 4 · 2 ab a 2 b 2 + c 2 4 = ( a + b ) 2 c 2 4 · c 2 ( a b ) 2 4 = a + b + c 2 · a + b c 2 · a + c b 2 · b + c a 2 = p ( p a ) ( p b ) ( p c )

这说明海伦公式与秦九韶公式实质上是同一公式,所以我们也称①为海伦 秦九韶公式.

问题:如图,在 ΔABC 中, AB = 13 BC = 12 AC = 7 O 内切于 ΔABC ,切点分别是 D E F

(1)求 ΔABC 的面积;

(2)求 O 的半径.

来源:2016年四川省凉山州中考数学试卷
  • 更新:2021-04-23
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,△ABC三个顶点坐标为 A ( - 3 , 0 ) B ( 3 , 0 )

(1)求△ABC内切圆⊙D的半径.

(2)过点 E 0 ,﹣ 1 的直线与⊙D相切于点F(点F在第一象限),求直线EF的解析式.

(3)以(2)为条件,P为直线EF上一点,以P为圆心,以 2 7 为半径作⊙P.若⊙P上存在一点到△ABC三个顶点的距离相等,求此时圆心P的坐标.

来源:2016年湖南省衡阳市中考数学试卷
  • 更新:2021-04-16
  • 题型:未知
  • 难度:未知

如图,点 E ΔABC 的内心, AE 的延长线交 BC 于点 F ,交 ΔABC 的外接圆 O 于点 D ,连接 BD ,过点 D 作直线 DM ,使 BDM = DAC

(1)求证:直线 DM O 的切线;

(2)求证: D E 2 = DF · DA

来源:2017年山东省滨州市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图,点E是△ABC的内心,AE的延长线与BC相交于点F,与△ABC的外接圆相交于点D

(1)求证: BFD ABD

(2)求证: DE DB

来源:2016年黑龙江省绥化市中考数学试卷
  • 更新:2021-04-16
  • 题型:未知
  • 难度:未知

已知任意三角形的三边长,如何求三角形面积?

古希腊的几何学家海伦解决了这个问题,在他的著作《度量论》一书中给出了计算公式﹣﹣海伦公式 S = p ( p - a ) ( p - b ) ( p - c ) (其中abc是三角形的三边长, p = a + b + c 2 S为三角形的面积),并给出了证明

例如:在△ABC中,a=3,b=4,c=5,那么它的面积可以这样计算:

a=3,b=4,c=5

p = a + b + c 2 = 6

S = p ( p - a ) ( p - b ) ( p - c ) = 6 × 3 × 2 × 1 = 6

事实上,对于已知三角形的三边长求三角形面积的问题,还可用我国南宋时期数学家秦九韶提出的秦九韶公式等方法解决.

根据上述材料,解答下列问题:

如图,在△ABC中,BC=5,AC=6,AB=9

(1)用海伦公式求△ABC的面积;

(2)求△ABC的内切圆半径r

来源:2016年广西桂林市中考数学试卷
  • 更新:2021-03-05
  • 题型:未知
  • 难度:未知

如图,已知 ΔABC B = 40 °

(1)在图中,用尺规作出 ΔABC 的内切圆 O ,并标出 O 与边 AB BC AC 的切点 D E F (保留痕迹,不必写作法);

(2)连接 EF DF ,求 EFD 的度数.

来源:2017年浙江省嘉兴市(舟山市)中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图1,在△ ABC中, ABAC,⊙ O是△ ABC的外接圆,过点 C作∠ BCD=∠ ACB交⊙ O于点 D,连接 ADBC于点 E,延长 DC至点 F,使 CFAC,连接 AF

(1)求证: EDEC

(2)求证: AF是⊙ O的切线;

(3)如图2,若点 G是△ ACD的内心, BCBE=25,求 BG的长.

来源:2019年广东省中考数学试卷
  • 更新:2021-04-13
  • 题型:未知
  • 难度:未知

初中数学三角形的内切圆与内心解答题