如图, AB 为 ⊙ O 的直径,且 AB = 4 ,点 C 在半圆上, OC ⊥ AB ,垂足为点 O , P 为半圆上任意一点(不与点 C 重合),过 P 点作 PE ⊥ OC 于点 E ,设 ΔOPE 的内心为 M ,连接 OM 、 PM .
(1)求 ∠ OMP 的度数;
(2)当点 P 在半圆上从点 B 运动到点 A 时,求内心 M 所经过的路径长.
如图5,在平行四边形中,平分交于点,平分交于点.求证:(1);(2)若,则判断四边形是什么特殊四边形,请证明你的结论.
先化简,再求值:,其中
解不等式组
如图12,把抛物线(虚线部分)向右平移1个单位长度,再向上平移1个单位长度,得到抛物线,抛物线与抛物线关于轴对称.点、、分别是抛物线、与轴的交点,、分别是抛物线、的顶点,线段交轴于点.(1)分别写出抛物线与的解析式;(2)设是抛物线上与、两点不重合的任意一点,点是点关于轴的对称点,试判断以、、、为顶点的四边形是什么特殊的四边形?说明你的理由.(3)在抛物线上是否存在点,使得,如果存在,求出点的坐标,如果不存在,请说明理由.
如图11-①,为的直径,与相切于点与相切于点,点为延长线上一点,且(1)求证:为的切线;(2)连接,的延长线与的延长线交于点(如图11-②所示).若,求线段和的长.