如图,顶点为M的抛物线y=ax2+bx+3与x轴交于A(3,0),B(-1,0)两点,与y轴交于点C.
(1)求这条抛物线对应的函数表达式;
(2)问在y轴上是否存在一点P,使得ΔPAM为直角三角形?若存在,求出点P的坐标;若不存在,说明理由.
(3)若在第一象限的抛物线下方有一动点D,满足DA=OA,过D作DG⊥x轴于点G,设ΔADG的内心为I,试求CI的最小值.
网格中每个小正方形的边长都是1.(1)将图1中画一个格点三角形DEF,使得△DEF≌△ABC(2)将图2中画一个格点三角形MNL,使得△MNL∽△ABC,且相似比为2:1(3)将图3中画一个格点三角形OPQ,使得△OPQ∽△ABC,且相似比为:1
如图,AB是⊙O的直径,BC是⊙O的弦,半径OD⊥BC,垂足为E,若BC=,OE=3;求:(1)⊙O的半径;(2)阴影部分的面积。
已知.如图,点D、E分别是在AB,AC上,.求证:DE∥BC
已知二次函数y=ax2+bx-3的图象经过点A(2,-3),B(-1,0). 求二次函数的解析式;
如图,在平面直角坐标系中,直线+2与x轴、y轴分别交于A、B两点,以AB为边在第二象限内作正方形ABCD.(1)求点A、B的坐标,并求边AB的长;(2)求点D和点C的坐标;(3)你能否在x轴上找一点M,使△MDB的周长最小?如果能,请求出M点的坐标;如果不能,说明理由.