如图,在 中, , 是斜边 上的中线,以 为直径的 分别交 、 于点 、 ,过点 作 ,垂足为 .
(1)若 的半径为 , ,求 的长;
(2)求证: 与 相切.
如图, 是 的直径, 是 的切线,切点为 , 交 于点 ,点 是 的中点.
(1)试判断直线 与 的位置关系,并说明理由;
(2)若 的半径为2, , ,求图中阴影部分的面积.
如图, 是 的直径, 与 交于点 ,弦 平分 , ,垂足为 .
(1)试判断直线 与 的位置关系,并说明理由;
(2)若 的半径为2, ,求线段 的长.
古希腊数学家毕达哥拉斯认为:“一切平面图形中最美的圆”,请研究如下美丽的圆,如图, 中, , , ,点O在线段 上,且 ,以O为圆心. 为半径的 交线段AO于点D,交线段AO的延长线于点E.
(1)求证: 是 的切线;
(2)研究过短中,小明同学发现 ,回答小明同学发现的结论是否正确?如果正确,给出证明;如果不正确,说明理由.
如图,在 的边 上取一点 ,以 为圆心, 为半径画 , 与边 相切于点 , ,连接 交 于点 ,连接 ,并延长交线段 于点 .
(1)求证: 是 的切线;
(2)若 , ,求 的半径;
(3)若 是 的中点,试探究 与 的数量关系并说明理由.
如图,在 中,点 在斜边 上,以 为圆心, 为半径作圆,分别与 , 相交于点 , ,连接 .已知 .
(1)求证: 是 的切线.
(2)若 , ,求 的半径.
如图,在 中, ,以 为直径作圆 ,分别交 于点 ,交 的延长线于点 ,过点 作 于点 ,连接 交线段 于点 .
(1)求证: 是圆 的切线;
(2)若 为 的中点,求 的值;
(3)若 ,求圆 的半径.
如图, 与 相切于点 , 交 于点 , 的延长线交 于点 , 是 上不与 , 重合的点, .
(1)求 的大小;
(2)若 的半径为3,点 在 的延长线上,且 ,求证: 与 相切.
如图, 的直径为 ,点 在 上,点 , 分别在 , 的延长线上, ,垂足为 , .
(1)求证: 是 的切线;
(2)若 , ,求 的长.
如图,在 中, .
(1)作出经过点 ,圆心 在斜边 上且与边 相切于点 的 (要求:用尺规作图,保留作图痕迹,不写作法和证明)
(2)设(1)中所作的 与边 交于异于点 的另外一点 ,若 的直径为5, ;求 的长.(如果用尺规作图画不出图形,可画出草图完成(2)问)
如图,在 中, , 与 相切于点 ,过点 作 的垂线交 的延长线于点 ,交 于点 ,连结 .
(1)求证: 是 的切线.
(2)若 , ,求 的长.
如图, 是 的直径,过点 作 的切线 ,点 是射线 上的动点,连接 ,过点 作 ,交 于点 ,连接 .
(1)求证: 是 的切线;
(2)当四边形 是平行四边形时,求 的度数.
如图,在 中, ,以 的边 为直径作 ,交 于点 ,过点 作 ,垂足为点 .
(1)试证明 是 的切线;
(2)若 的半径为5, ,求此时 的长.
如图,已知 是 的直径,直线 与 相切于点 ,过点 作 交 于点 ,连接 .
(1)求证: 是 的切线.
(2)若 ,直径 ,求线段 的长.