如图, AB 是 ⊙ O 的直径, AC 与 ⊙ O 交于点 F ,弦 AD 平分 ∠ BAC , DE ⊥ AC ,垂足为 E .
(1)试判断直线 DE 与 ⊙ O 的位置关系,并说明理由;
(2)若 ⊙ O 的半径为2, ∠ BAC = 60 ° ,求线段 EF 的长.
平面直角坐标系中,平行四边形ABOC如图放置,点A、C的坐标分别为(0,3)、(-1,0),将此平行四边形绕点0顺时针旋转90°,得到平行四边形。(1)若抛物线过点C,A,,求此抛物线的解析式;(2)求平行四边形ABOC和平行四边形重叠部分△的周长;(3)点M是第一象限内抛物线上的一动点,间:点M在何处时△的面积最大?最大面积是多少?并求出此时点M的坐标。
如图,抛物线经过A(4,0),B(1,0)两点.(1)求出抛物线的解析式;(2)若P是抛物线上x轴上方的一动点,过P作轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;(3)在直线AC上方的抛物线上有一点D,使得△DCA的面积最大,求出点D的坐标.
如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P在AB上,AP=2,点E,F同时从点P出发,分别沿PA,PB以每秒1个单位长度的速度向点A,B匀速运动,点E到达点A后立刻以原速度沿AB向点B运动,点F运动到点B时停止,点E也随之停止.在点E,F运动过程中,以EF为边作正方形EFGH,使它与△ABC在线段AB的同侧.设E,F运动的时间为t秒(t>0),正方形EFGH与△ABC重叠部分面积为S.(1)当t=1时,正方形EFGH的边长是 ,当t=3时,正方形EFGH的边长是 ;(2)当0<t≤2时,求S与t的函数关系式;(3)直接答出:在整个运动过程中,当t为何值时,S最大?最大面积是多少?
如图13-1,若四边形ABCD、四边形GFED都是正方形,显然图中有AG=CE, AG⊥CE.(1)当正方形GFED绕D旋转到如图13-2的位置时,AG=CE是否成立?若成立,请给出证明;若不成立,请说明理由.(2)当正方形GFED绕D旋转到如图13-3的位置,点F在边AD上,延长CE交AG于H,交AD于M.①求证:AG⊥CH;②当AD=4,DG=时,求CM的长.
如图所示,制作一种产品,需将原材料加热,设该材料温度为y℃,从加热开始计算的时间为x分钟.据了解,该材料在加热过程中温度y与时间x成一次函数关系.已知该材料在加热前的温度为l5℃,加热5分钟使材料温度达到60℃时停止加热,停止加热后,材料温度逐渐下降,这时温度y与时问x成反比例函数关系.(1)分别求出该材料加热和停止加热过程中y与x的函数关系(要写出x的取值范);(2)根据工艺要求,在材料温度不低于30℃的这段时间内,需要对该材料进行特殊处理,那么对该材料进行特殊处理所用的时间为多少分钟?