初中数学

如图,点 A O 直径 BD 延长线上的一点, C O 上, AC = BC AD = CD

(1)求证: AC O 的切线;

(2)若 O 的半径为2,求 ΔABC 的面积.

来源:2016年贵州省黔西南州中考数学试卷
  • 更新:2021-04-29
  • 题型:未知
  • 难度:未知

如图, AB O 的直径,点 D AE ̂ 上一点,且 BDE = CBE BD AE 交于点 F

(1)求证: BC O 的切线;

(2)若 BD 平分 ABE ,求证: D E 2 = DF DB

(3)在(2)的条件下,延长 ED BA 交于点 P ,若 PA = AO DE = 2 ,求 PD 的长.

来源:2016年贵州省黔南州中考数学试卷
  • 更新:2021-04-29
  • 题型:未知
  • 难度:未知

如图,在 O 中, AB 为直径, D E 为圆上两点, C 为圆外一点,且 E + C = 90 °

(1)求证: BC O 的切线.

(2)若 sin A = 3 5 BC = 6 ,求 O 的半径.

来源:2016年贵州省六盘水市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, D AC 上一点,且 CD = CB ,以 BC 为直径作 O ,交 BD 于点 E ,连接 CE ,过 D DF AB 于点 F BCD = 2 ABD

(1)求证: AB O 的切线;

(2)若 A = 60 ° DF = 3 ,求 O 的直径 BC 的长.

来源:2016年贵州省毕节地区中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

如图,已知 AO Rt Δ ABC 的角平分线, ACB = 90 ° AC BC = 4 3 ,以 O 为圆心, OC 为半径的圆分别交 AO BC 于点 D E ,连接 ED 并延长交 AC 于点 F

(1)求证: AB O 的切线;

(2)求 tan CAO 的值;

(3)求 AD CF 的值.

来源:2017年广西柳州市中考数学试卷
  • 更新:2021-04-28
  • 题型:未知
  • 难度:未知

如图,在菱形 ABCD 中,点 P 在对角线 AC 上,且 PA = PD O ΔPAD 的外接圆.

(1)求证: AB O 的切线;

(2)若 AC = 8 tan BAC = 2 2 ,求 O 的半径.

来源:2017年广西贵港市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

如图, AB O 的直径,弦 CD AB ,垂足为 H ,连接 AC ,过 BD ̂ 上一点 E EG / / AC CD 的延长线于点 G ,连接 AE CD 于点 F ,且 EG = FG ,连接 CE

(1)求证: ΔECF ΔGCE

(2)求证: EG O 的切线;

(3)延长 AB GE 的延长线于点 M ,若 tan G = 3 4 AH = 3 3 ,求 EM 的值.

来源:2017年广西北海市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

通过对下面数学模型的研究学习,解决问题.

【模型呈现】

如图,在 Rt Δ ABC ACB = 90 ° ,将斜边 AB 绕点 A 顺时针旋转 90 ° 得到 AD ,过点 D DE AC 于点 E ,可以推理得到 ΔABC ΔDAE ,进而得到 AC = DE BC = AE

我们把这个数学模型称为“ K 型”.

推理过程如下:

【模型应用】

如图,在 Rt Δ ABC 内接于 O ACB = 90 ° BC = 2 ,将斜边 AB 绕点 A 顺时针旋转一定的角度得到 AD ,过点 D DE AC 于点 E DAE = ABC DE = 1 ,连接 DO O 于点 F

(1)求证: AD O 的切线;

(2)连接 FC AB 于点 G ,连接 FB .求证: F G 2 = GO · GB

来源:2019年甘肃省兰州市中考数学试卷(a卷)
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

如图, AB O 的直径, C O 上一点, D BA 延长线上一点, ACD = B

(1)求证: DC O 的切线;

(2)线段 DF 分别交 AC BC 于点 E F CEF = 45 ° O 的半径为5, sin B = 3 5 ,求 CF 的长.

来源:2018年甘肃省兰州市中考数学试卷(a卷)
  • 更新:2021-04-25
  • 题型:未知
  • 难度:未知

如图,在 ΔAOB 中, AOB 为直角, OA = 6 OB = 8 ,半径为2的动圆圆心 Q 从点 O 出发,沿着 OA 方向以1个单位长度 / 秒的速度匀速运动,同时动点 P 从点 A 出发,沿着 AB 方向也以1个单位长度 / 秒的速度匀速运动,设运动时间为 t ( 0 < t 5 ) P 为圆心, PA 长为半径的 P AB OA 的另一个交点分别为 C D ,连接 CD QC

(1)当 t 为何值时,点 Q 与点 D 重合?

(2)当 Q 经过点 A 时,求 P OB 截得的弦长.

(3)若 P 与线段 QC 只有一个公共点,求 t 的取值范围.

来源:2016年四川省攀枝花市中考数学试卷
  • 更新:2021-04-23
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ACB = 90 ° BAC 的平分线交 BC 于点 O OC = 1 ,以点 O 为圆心 OC 为半径作半圆.

(1)求证: AB O 的切线;

(2)如果 tan CAO = 1 3 ,求 cos B 的值.

来源:2016年四川省南充市中考数学试卷
  • 更新:2021-04-23
  • 题型:未知
  • 难度:未知

如图, AB O 直径, C O 上一点,点 D BC ̂ 的中点, DE AC E DF AB F

(1)判断 DE O 的位置关系,并证明你的结论;

(2)若 OF = 4 ,求 AC 的长度.

来源:2016年四川省绵阳市中考数学试卷
  • 更新:2021-04-23
  • 题型:未知
  • 难度:未知

如图, ΔABC 内接于 O BD O 的直径, BD AC 相交于点 H AC 的延长线与过点 B 的直线相交于点 E ,且 A = EBC

(1)求证: BE O 的切线;

(2)已知 CG / / EB ,且 CG BD BA 分别相交于点 F G ,若 BG · BA = 48 FG = 2 DF = 2 BF ,求 AH 的值.

来源:2016年四川省泸州市中考数学试卷
  • 更新:2021-04-23
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC ,以 AC 边为直径作 O BC 边于点 D ,过点 D DE AB 于点 E ED AC 的延长线交于点 F

(1)求证: EF O 的切线;

(2)若 EB = 3 2 ,且 sin CFD = 3 5 ,求 O 的半径与线段 AE 的长.

来源:2016年四川省乐山市中考数学试卷
  • 更新:2021-04-23
  • 题型:未知
  • 难度:未知

如图,以 ΔABC BC 边上一点 O 为圆心,经过 A C 两点且与 BC 边交于点 E ,点 D CE 的下半圆弧的中点,连接 AD 交线段 EO 于点 F ,若 AB = BF

(1)求证: AB O 的切线;

(2)若 CF = 4 DF = 10 ,求 O 的半径 r sin B

来源:2016年四川省广安市中考数学试卷
  • 更新:2021-04-23
  • 题型:未知
  • 难度:未知

初中数学切线的判定解答题