如图, 内接于 , 的边 是 的直径,且 ,连接 .
(1)求证: 是 的切线.
(2)若 , ,求 与弦 围成的阴影部分的面积.
如图,已知 是圆 的直径,弦 ,垂足为 ,与 平行的圆 的一条切线交 的延长线于点 ,交 的延长线于点 ,切点为 ,连接 交 于点 .
(1)求证: ;
(2)连接 ,若 , ,求圆 的直径的长度.
已知 ,以 为直径的 分别交 于 , 于 ,连接 ,若 .
(1)求证: ;
(2)若 , ,求 的长.
如图,已知 是 的内接三角形, 是 的直径,连结 , 平分 .
(1)求证: ;
(2)若 ,求 的长.
已知四边形 是 的内接四边形, 是 的直径, ,垂足为 .
(1)延长 交 于点 ,延长 , 交于点 ,如图1.求证: ;
(2)过点 作 ,垂足为 , 交 于点 ,且点 和点 都在 的左侧,如图2.若 , , ,求 的大小.
如图,以 为直径的 外接于 ,过 点的切线 与 的延长线交于点 , 的平分线分别交 , 于点 , ,其中 , 的长是一元二次方程 的两个实数根.
(1)求证: ;
(2)在线段 上是否存在一点 ,使得四边形 是菱形?若存在,请给予证明,并求其面积;若不存在,说明理由.
如果三角形三边的长 、 、 满足 ,那么我们就把这样的三角形叫做“匀称三角形”,如:三边长分别为1,1,1或3,5,7, 的三角形都是“匀称三角形”.
(1)如图1,已知两条线段的长分别为 、 .用直尺和圆规作一个最短边、最长边的长分别为 、 的“匀称三角形”(不写作法,保留作图痕迹);
(2)如图2, 中, ,以 为直径的 交 于点 ,过点 作 的切线交 延长线于点 ,交 于点 ,若 ,判断 是否为“匀称三角形”?请说明理由.
如图, 是 直径,点 , 为 上的两点,且 ,连接 , 交于点 , 的切线 与 延长线相交于点 , 为切点.
(1)求证: ;
(2)若 , ,求 的长.
如图,在 中, ,以 为直径的半圆 交 于点 ,过点 作半圆 的切线,交 于点 .
(1)求证: ;
(2)若 , ,求 的长.
已知 内接于 , , ,点 是 上一点.
(Ⅰ)如图①,若 为 的直径,连接 ,求 和 的大小;
(Ⅱ)如图②,若 ,连接 ,过点作 的切线,与 的延长线交于点 ,求 的大小.
如图, 是 的直径, 为 上一点 不与点 , 重合)连接 , ,过点 作 ,垂足为点 .将 沿 翻折,点 落在点 处得 , 交 于点 .
(1)求证: 是 的切线;
(2)若 , ,求阴影部分面积.
如图,在 中, 是 边上的中线,以 为直径的 交 于点 ,过 作 于点 ,交 的延长线于点 ,过点 作 于 .
(1)求证: ;
(2)求证:直线 是 的切线.
如图, 内接于 , 为 的直径, , ,连结 ,弦 分别交 , 于点 , ,其中点 是 的中点.
(1)求证: .
(2)求 的长.
如图, 在 中, ,以 为直径作 交 于点 , 为 的中点, 连接 并延长交 的延长线于点 .
(1) 求证: 是 的切线;
(2) 若 , ,求 直径的长 .