初中数学

如图,在平面直角坐标系中,四边形 ABCD 是以 AB 为直径的 M 的内接四边形,点 A B x 轴上, ΔMBC 是边长为2的等边三角形,过点 M 作直线 l x 轴垂直,交 M 于点 E ,垂足为点 M ,且点 D 平分 AC ̂

(1)求过 A B E 三点的抛物线的解析式;

(2)求证:四边形 AMCD 是菱形;

(3)请问在抛物线上是否存在一点 P ,使得 ΔABP 的面积等于定值5?若存在,请求出所有的点 P 的坐标;若不存在,请说明理由.

来源:2016年青海省西宁市中考数学试卷
  • 更新:2021-05-18
  • 题型:未知
  • 难度:未知

如图①,在平面直角坐标系中,圆心为 P ( x , y ) 的动圆经过点 A ( 1 , 2 ) 且与 x 轴相切于点 B

(1)当 x = 2 时,求 P 的半径;

(2)求 y 关于 x 的函数解析式,请判断此函数图象的形状,并在图②中画出此函数的图象;

(3)请类比圆的定义(圆可以看成是到定点的距离等于定长的所有点的集合),给(2)中所得函数图象进行定义:此函数图象可以看成是到  的距离等于到  的距离的所有点的集合.

(4)当 P 的半径为1时,若 P 与以上(2)中所得函数图象相交于点 C D ,其中交点 D ( m , n ) 在点 C 的右侧,请利用图②,求 cos APD 的大小.

来源:2018年山东省滨州市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图,抛物线 y = 1 2 x 2 + 3 2 x + 2 x 轴交于 A B 两点(点 A 在点 B 的左侧),与 y 轴交于点 C

(1)试探究 ΔABC 的外接圆的圆心位置,求出圆心坐标;

(2)点 P 是抛物线上一点(不与点 A 重合),且 S ΔPBC = S ΔABC ,求 APB 的度数;

(3)在(2)的条件下,点 E x 轴上方抛物线上一点,点 F 是抛物线对称轴上一点,是否存在这样的点 E 和点 F ,使得以点 B P E F 为顶点的四边形是平行四边形?若存在,请直接写出点 F 的坐标;若不存在,请说明理由.

来源:2017年辽宁省鞍山市中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

如图,已知正方形 ABCD 的边长为4,点 P AB 边上的一个动点,连接 CP ,过点 P PC 的垂线交 AD 于点 E ,以 PE 为边作正方形 PEFG ,顶点 G 在线段 PC 上,对角线 EG PF 相交于点 O

(1)若 AP = 1 ,则 AE =        

(2)①求证:点 O 一定在 ΔAPE 的外接圆上;

②当点 P 从点 A 运动到点 B 时,点 O 也随之运动,求点 O 经过的路径长;

(3)在点 P 从点 A 到点 B 的运动过程中, ΔAPE 的外接圆的圆心也随之运动,求该圆心到 AB 边的距离的最大值.

来源:2017年江苏省扬州市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,已知二次函数 y = 4 9 x 2 - 4 的图象与 x 轴交于 A B 两点,与 y 轴交于点 C C 的半径为 5 P C 上一动点.

(1)点 B C 的坐标分别为 B (        ) C (       )

(2)是否存在点 P ,使得 ΔPBC 为直角三角形?若存在,求出点 P 的坐标;若不存在,请说明理由;

(3)连接 PB ,若 E PB 的中点,连接 OE ,则 OE 的最大值 =       

来源:2017年江苏省徐州市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,在矩形纸片 ABCD 中,已知 AB = 1 BC = 3 ,点 E 在边 CD 上移动,连接 AE ,将多边形 ABCE 沿直线 AE 翻折,得到多边形 AB ' C ' E ,点 B C 的对应点分别为点 B ' C '

(1)当 B ' C ' 恰好经过点 D 时(如图 1 ),求线段 CE 的长;

(2)若 B ' C ' 分别交边 AD CD 于点 F G ,且 DAE = 22 . 5 ° (如图 2 ) ,求 ΔDFG 的面积;

(3)在点 E 从点 C 移动到点 D 的过程中,求点 C ' 运动的路径长.

来源:2017年江苏省宿迁市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图1是一个用铁丝围成的篮筐,我们来仿制一个类似的柱体形篮筐.如图2,它是由一个半径为 r 、圆心角 90 ° 的扇形 A 2 O B 2 ,矩形 A 2 C 2 EO B 2 D 2 EO ,及若干个缺一边的矩形状框 A 1 C 1 D 1 B 1 A 2 C 2 D 2 B 2 A n B n C n D n OEFG 围成,其中 A 1 G B 1 A 2 B 2 ̂ 上, A 2 A 3 A n B 2 B 3 B n 分别在半径 O A 2 O B 2 上, C 2 C 3 C n D 2 D 3 D n 分别在 E C 2 E D 2 上, EF C 2 D 2 H 2 C 1 D 1 EF H 1 F H 1 = H 1 H 2 = d C 1 D 1 C 2 D 2 C 3 D 3 C n D n 依次等距离平行排放(最后一个矩形状框的边 C n D n 与点 E 间的距离应不超过 d ) A 1 C 1 / / A 2 C 2 / / A 3 C 3 / / / / A n C n

(1)求 d 的值;

(2)问: C n D n 与点 E 间的距离能否等于 d ?如果能,求出这样的 n 的值,如果不能,那么它们之间的距离是多少?

来源:2016年江苏省无锡市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

问题背景:

如图①,在四边形 ADBC 中, ACB = ADB = 90 ° AD = BD ,探究线段 AC BC CD 之间的数量关系.

小吴同学探究此问题的思路是:将 ΔBCD 绕点 D ,逆时针旋转 90 ° ΔAED 处,点 B C 分别落在点 A E 处(如图② ) ,易证点 C A E 在同一条直线上,并且 ΔCDE 是等腰直角三角形,所以 CE = 2 CD ,从而得出结论: AC + BC = 2 CD

简单应用:

(1)在图①中,若 AC = 2 BC = 2 2 ,则 CD =   

(2)如图③, AB O 的直径,点 C D 上, AD ̂ = BD ̂ ,若 AB = 13 BC = 12 ,求 CD 的长.

拓展规律:

(3)如图④, ACB = ADB = 90 ° AD = BD ,若 AC = m BC = n ( m < n ) ,求 CD 的长(用含 m n 的代数式表示)

(4)如图⑤, ACB = 90 ° AC = BC ,点 P AB 的中点,若点 E 满足 AE = 1 3 AC CE = CA ,点 Q AE 的中点,则线段 PQ AC 的数量关系是  

来源:2016年江苏省淮安市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,正方形 ABCD 的边长为1,点 P 在射线 BC 上(异于点 B C ) ,直线 AP 与对角线 BD 及射线 DC 分别交于点 F Q

(1)若 BP = 3 3 ,求 BAP 的度数;

(2)若点 P 在线段 BC 上,过点 F FG CD ,垂足为 G ,当 ΔFGC ΔQCP 时,求 PC 的长;

(3)以 PQ 为直径作 M

①判断 FC M 的位置关系,并说明理由;

②当直线 BD M 相切时,直接写出 PC 的长.

来源:2016年江苏省常州市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图所示, AB O 的直径, P AB 延长线上的一点, PC O 于点 C AD PC ,垂足为 D ,弦 CE 平分 ACB ,交 AB 于点 F ,连接 AE

(1)求证: CAB = CAD

(2)求证: PC = PF

(3)若 tan ABC = 3 2 AE = 5 2 ,求线段 PC 的长.

来源:2017年湖南省湘西州中考数学试卷
  • 更新:2021-05-06
  • 题型:未知
  • 难度:未知

如图,动点 M 在以 O 为圆心, AB 为直径的半圆弧上运动(点 M 不与点 A B AB ̂ 的中点 F 重合),连接 OM .过点 M ME AB 于点 E ,以 BE 为边在半圆同侧作正方形 BCDE ,过点 M O 的切线交射线 DC 于点 N ,连接 BM BN

(1)探究:如图一,当动点 M AF ̂ 上运动时;

①判断 ΔOEM ΔMDN 是否成立?请说明理由;

②设 ME + NC MN = k k 是否为定值?若是,求出该定值,若不是,请说明理由;

③设 MBN = α α 是否为定值?若是,求出该定值,若不是,请说明理由;

(2)拓展:如图二,当动点 M FB ̂ 上运动时;

分别判断(1)中的三个结论是否保持不变?如有变化,请直接写出正确的结论.(均不必说明理由)

来源:2017年湖南省湘潭市中考数学试卷
  • 更新:2021-05-07
  • 题型:未知
  • 难度:未知

如图,已知 A 的圆心为点 ( 3 , 0 ) ,抛物线 y = a x 2 37 6 x + c 过点 A ,与 A 交于 B C 两点,连接 AB AC ,且 AB AC B C 两点的纵坐标分别是2、1.

(1)请直接写出点 B 的坐标,并求 a c 的值;

(2)直线 y = kx + 1 经过点 B ,与 x 轴交于点 D .点 E (与点 D 不重合)在该直线上,且 AD = AE ,请判断点 E 是否在此抛物线上,并说明理由;

(3)如果直线 y = k 1 x 1 A 相切,请直接写出满足此条件的直线解析式.

来源:2019年广西梧州市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

如图1, AB O 的直径, E AB 延长线上一点, EC O 于点 C OP AO AC 于点 P ,交 EC 的延长线于点 D

(1)求证: ΔPCD 是等腰三角形;

(2) CG AB H 点,交 O G 点,过 B 点作 BF / / EC ,交 O 于点 F ,交 CG Q 点,连接 AF ,如图2,若 sin E = 3 5 CQ = 5 ,求 AF 的值.

来源:2016年四川省雅安市中考数学试卷
  • 更新:2021-04-23
  • 题型:未知
  • 难度:未知

已知在平面直角坐标系中,点 A(3,0), B(﹣3,0), C(﹣3,8),以线段 BC为直径作圆,圆心为 E,直线 AC交⊙ E于点 D,连接 OD

(1)求证:直线 OD是⊙ E的切线;

(2)点 Fx轴上任意一动点,连接 CF交⊙ E于点 G,连接 BG

①当tan∠ ACF 1 7 时,求所有 F点的坐标  (直接写出);

②求 BG CF 的最大值.

来源:2019年广东省深圳市中考数学试卷
  • 更新:2021-04-13
  • 题型:未知
  • 难度:未知

如图,在四边形 ABCD中,∠ B=60°,∠ D=30°, ABBC

(1)求∠ A+∠ C的度数;

(2)连接 BD,探究 ADBDCD三者之间的数量关系,并说明理由;

(3)若 AB=1,点 E在四边形 ABCD内部运动,且满足 AE 2BE 2+ CE 2,求点 E运动路径的长度.

来源:2018年广东省广州市中考数学试卷
  • 更新:2021-04-13
  • 题型:未知
  • 难度:未知

初中数学圆试题