初中数学

如图,顶点为的抛物线轴交于两点,与轴交于点,过点轴交抛物线于另一点,作轴,垂足为点,双曲线经过点,连接

(1)求抛物线的表达式;

(2)点分别是轴,轴上的两点,当以为顶点的四边形周长最小时,求出点的坐标;

(3)动点从点出发,以每秒1个单位长度的速度沿方向运动,运动时间为秒,当为何值时,的度数最大?(请直接写出结果)

来源:2019年山东省烟台市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,为坐标原点,点,点的中线轴交于点,且经过三点.

(1)求圆心的坐标;

(2)若直线相切于点,交轴于点,求直线的函数表达式;

(3)在(2)的条件下,在过点且以圆心为顶点的抛物线上有一动点,过点轴,交直线于点.若以为半径的与直线相交于另一点.当时,求点的坐标.

来源:2019年山东省潍坊市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

(1)方法选择

如图①,四边形的内接四边形,连接.求证:

小颖认为可用截长法证明:在上截取,连接

小军认为可用补短法证明:延长至点,使得

请你选择一种方法证明.

(2)类比探究

[探究1]

如图②,四边形的内接四边形,连接的直径,.试用等式表示线段之间的数量关系,并证明你的结论.

[探究2]

如图③,四边形的内接四边形,连接.若的直径,,则线段之间的等量关系式是  

(3)拓展猜想

如图④,四边形的内接四边形,连接.若的直径,,则线段之间的等量关系式是  

来源:2019年山东省威海市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,抛物线过点,且与直线交于两点,点的坐标为

(1)求抛物线的解析式;

(2)点为抛物线上位于直线上方的一点,过点轴交直线于点,点为对称轴上一动点,当线段的长度最大时,求的最小值;

(3)设点为抛物线的顶点,在轴上是否存在点,使?若存在,求点的坐标;若不存在,请说明理由.

来源:2019年四川省资阳市中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

已知二次函数的图象过点,点不重合)是图象上的一点,直线过点且平行于轴.于点,点

(1)求二次函数的解析式;

(2)求证:点在线段的中垂线上;

(3)设直线交二次函数的图象于另一点于点,线段的中垂线交于点,求的值;

(4)试判断点与以线段为直径的圆的位置关系.

来源:2019年四川省雅安市中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

如图,在以点为中心的正方形中,,连接,动点从点出发沿以每秒1个单位长度的速度匀速运动,到达点停止.在运动过程中,的外接圆交于点,连接于点,连接,将沿翻折,得到

(1)求证:是等腰直角三角形;

(2)当点恰好落在线段上时,求的长;

(3)设点运动的时间为秒,的面积为,求关于时间的关系式.

来源:2019年四川省绵阳市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图1,经过等边的顶点(圆心内),分别与的延长线交于点,连结于点

(1)求证:

(2)当时,求的长.

(3)设

①求关于的函数表达式;

②如图2,连结,若的面积是面积的10倍,求的值.

来源:2019年浙江省宁波市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图,已知锐角三角形内接于圆于点,连接

(1)若

①求证:

②当时,求面积的最大值.

(2)点在线段上,,连接,设是正数),若,求证:

来源:2019年浙江省杭州市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图,的直径,两点在的延长线上,上的点,且,延长,使得,设

(1)求证:

(2)求的长;

(3)若点三点确定的圆上,求的长.

来源:2019年云南省中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

已知的直径,的切线,上的点,是直径上的动点,与直线上的点连线距离的最小值为与直线上的点连线距离的最小值为

(1)求证:的切线;

(2)设,求的正弦值;

(3)设,求的取值范围.

来源:2017年云南省中考数学试卷
  • 更新:2021-01-03
  • 题型:未知
  • 难度:未知

已知的直径,弦与弦交于点.且,垂足为点

(1)如图1,如果,求弦的长;

(2)如图2,如果为弦的中点,求的余切值;

(3)联结,如果的内接正边形的一边,的内接正边形的一边,求的面积.

来源:2018年上海市中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

如图,已知的半径长为1,的两条弦,且的延长线交于点,联结

(1)求证:

(2)当是直角三角形时,求两点的距离;

(3)记 的面积分别为,如果的比例中项,求的长.

来源:2017年上海市中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

问题提出:

(1)如图1,已知,试确定一点,使得以为顶点的四边形为平行四边形,请画出这个平行四边形;

问题探究:

(2)如图2,在矩形中,,若要在该矩形中作出一个面积最大的,且使,求满足条件的点到点的距离;

问题解决:

(3)如图3,有一座塔,按规定,要以塔为对称中心,建一个面积尽可能大的形状为平行四边形的景区.根据实际情况,要求顶点是定点,点到塔的距离为50米,,那么,是否可以建一个满足要求的面积最大的平行四边形景区?若可以,求出满足要求的平行四边形的最大面积;若不可以,请说明理由.(塔的占地面积忽略不计)

来源:2019年陕西省中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

问题提出

(1)如图①,已知直线外一点,试在直线上确定两点,使,并画出这个

问题探究

(2)如图②,是边长为28的正方形的对称中心,边上的中点,连接.试在正方形的边上确定点,使线段将正方形分割成面积之比为的两部分.求点到点的距离.

问题解决

(3)如图③,有一个矩形花园.根据设计要求,点在对角线上,且,并在四边形区域内种植一种红色花卉,在矩形内其他区域均种植一种黄色花卉.已知种植这种红色花卉每平方米需210元,种植这种黄色花卉每平方米需180元.试求按设计要求,完成这两种花卉的种植至少需费用多少元?(结果保留整数.参考数据:

来源:2019年陕西省中考数学试卷(副卷)
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

问题提出

(1)如图①,在中,,则的外接圆半径的值为  

问题探究

(2)如图②,的半径为13,弦的中点,上一动点,求的最大值.

问题解决

(3)如图③所示,是某新区的三条规划路,其中所对的圆心角为,新区管委会想在路边建物资总站点,在路边分别建物资分站点,也就是,分别在、线段上选取点.由于总站工作人员每天都要将物资在各物资站点间按的路径进行运输,因此,要在各物资站点之间规划道路.为了快捷、环保和节约成本.要使得线段之和最短,试求的最小值.(各物资站点与所在道路之间的距离、路宽均忽略不计)

来源:2018年陕西省中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

初中数学圆试题