如图,在以点O为中心的正方形ABCD中,AD=4,连接AC,动点E从点O出发沿O→C以每秒1个单位长度的速度匀速运动,到达点C停止.在运动过程中,ΔADE的外接圆交AB于点F,连接DF交AC于点G,连接EF,将ΔEFG沿EF翻折,得到ΔEFH.
(1)求证:ΔDEF是等腰直角三角形;
(2)当点H恰好落在线段BC上时,求EH的长;
(3)设点E运动的时间为t秒,ΔEFG的面积为S,求S关于时间t的关系式.
计算:
如图,四边形ABCD是梯形,,PC是抛物线的对称轴,且. (1)求抛物线的函数表达式; (2)求点D的坐标; (3)求直线AD的函数表达式; (4)PD与AD垂直吗?
正方形ABCD的边长为8,正方形EFGH的边长为3,正方形EFGH可在线段AD上滑动. EC交AD于点M. 设AF=x,FM=y,△ECG的面积为s. (1)求y与x之间的关系; (2)求s与x之间的关系; (3)求s的最大值和最小值; (4)若放宽限制条件,使线段FG可在射线AD上滑动,直接写出s与x之间的关系.
如图,∠C=90°,∠CAE=∠ABC,AC=2,BC=3. (1)判断AE与⊙O的位置关系,并说明理由; (2)求OB的长;