初中数学

定义:若四边形有一组对角互补,一组邻边相等,且相等邻边的夹角为直角,像这样的图形称为"直角等邻对补"四边形,简称"直等补"四边形.

根据以上定义,解决下列问题:

(1)如图1,正方形 ABCD 中, E CD 上的点,将 ΔBCE B 点旋转,使 BC BA 重合,此时点 E 的对应点 F DA 的延长线上,则四边形 BEDF 为"直等补"四边形,为什么?

(2)如图2,已知四边形 ABCD 是"直等补"四边形, AB = BC = 5 CD = 1 AD > AB ,点 B 到直线 AD 的距离为 BE

①求 BE 的长;

②若 M N 分别是 AB AD 边上的动点,求 ΔMNC 周长的最小值.

来源:2020年湖南省益阳市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

问题背景:如图1,在四边形 ABCD 中, BAD = 90 ° BCD = 90 ° BA = BC ABC = 120 ° MBN = 60 ° MBN B 点旋转,它的两边分别交 AD DC E F .探究图中线段 AE CF EF 之间的数量关系.

小李同学探究此问题的方法是:延长 FC G ,使 CG = AE ,连接 BG ,先证明 ΔBCG ΔBAE ,再证明 ΔBFG ΔBFE ,可得出结论,他的结论就是    

探究延伸1:如图2,在四边形 ABCD 中, BAD = 90 ° BCD = 90 ° BA = BC ABC = 2 MBN MBN B 点旋转.它的两边分别交 AD DC E F ,上述结论是否仍然成立?请直接写出结论(直接写出"成立"或者"不成立" ) ,不要说明理由;

探究延伸2:如图3,在四边形 ABCD 中, BA = BC BAD + BCD = 180 ° ABC = 2 MBN MBN B 点旋转.它的两边分别交 AD DC E F .上述结论是否仍然成立?并说明理由;

实际应用:如图4,在某次军事演习中,舰艇甲在指挥中心 ( O 处)北偏西 30 ° A 处.舰艇乙在指挥中心南偏东 70 ° B 处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以75海里 / 小时的速度前进,同时舰艇乙沿北偏东 50 ° 的方向以100海里 / 小时的速度前进,1.2小时后,指挥中心观测到甲、乙两舰艇分别到达 E F 处.且指挥中心观测两舰艇视线之间的夹角为 70 ° .试求此时两舰艇之间的距离.

来源:2020年湖南省湘西州中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图1,平面直角坐标系 xOy 中,等腰 ΔABC 的底边 BC x 轴上, BC = 8 ,顶点 A y 的正半轴上, OA = 2 ,一动点 E ( 3 , 0 ) 出发,以每秒1个单位的速度沿 CB 向左运动,到达 OB 的中点停止.另一动点 F 从点 C 出发,以相同的速度沿 CB 向左运动,到达点 O 停止.已知点 E F 同时出发,以 EF 为边作正方形 EFGH ,使正方形 EFGH ΔABC BC 的同侧,设运动的时间为 t ( t 0 )

(1)当点 H 落在 AC 边上时,求 t 的值;

(2)设正方形 EFGH ΔABC 重叠面积为 S ,请问是否存在 t 值,使得 S = 91 36 ?若存在,求出 t 值;若不存在,请说明理由;

(3)如图2,取 AC 的中点 D ,连结 OD ,当点 E F 开始运动时,点 M 从点 O 出发,以每秒 2 5 个单位的速度沿 OD - DC - CD - DO 运动,到达点 O 停止运动.请问在点 E 的整个运动过程中,点 M 可能在正方形 EFGH 内(含边界)吗?如果可能,求出点 M 在正方形 EFGH 内(含边界)的时长;若不可能,请说明理由.

来源:2020年湖南省衡阳市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图1,在等腰直角三角形 ADC 中, ADC = 90 ° AD = 4 .点 E AD 的中点,以 DE 为边作正方形 DEFG ,连接 AG CE .将正方形 DEFG 绕点 D 顺时针旋转,旋转角为 α ( 0 ° < α < 90 ° )

(1)如图2,在旋转过程中,

①判断 ΔAGD ΔCED 是否全等,并说明理由;

②当 CE = CD 时, AG EF 交于点 H ,求 GH 的长.

(2)如图3,延长 CE 交直线 AG 于点 P

①求证: AG CP

②在旋转过程中,线段 PC 的长度是否存在最大值?若存在,求出最大值;若不存在,请说明理由.

来源:2020年湖南省郴州市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图,四边形是正方形,点为对角线的中点.

(1)问题解决:如图①,连接,分别取的中点,连接,则的数量关系是   ,位置关系是  

(2)问题探究:如图②,△是将图①中的绕点按顺时针方向旋转得到的三角形,连接,点分别为的中点,连接.判断的形状,并证明你的结论;

(3)拓展延伸:如图③,△是将图①中的绕点按逆时针方向旋转得到的三角形,连接,点分别为的中点,连接.若正方形的边长为1,求的面积.

来源:2020年贵州省贵阳市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,矩形的边长是的根,连接,并过点,垂足为,动点点以每秒2个单位长度的速度沿方向匀速运动到点为止;点沿线段以每秒个单位长度的速度由点向点匀速运动,到点为止,点与点同时出发,设运动时间为

(1)线段  

(2)连接,求的面积与运动时间的函数关系式;

(3)在整个运动过程中,当是以为腰的等腰三角形时,直接写出点的坐标.

来源:2020年黑龙江省七台河市中考数学试卷(农垦、森工用)
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,四边形的边轴上,轴上.为坐标原点,,线段的长分别是方程的两个根

(1)求点的坐标;

(2)上一点,上一点,,将翻折,使点落在上的点处,双曲线的一个分支过点.求的值;

(3)在(2)的条件下,为坐标轴上一点,在平面内是否存在点,使以为顶点四边形为矩形?若存在,请直接写出点的坐标;若不存在,请说明理由.

来源:2020年黑龙江省牡丹江市、鸡西市朝鲜族学校中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

(1)证明推断:如图(1),在正方形中,点分别在边上,于点,点分别在边上,

①求证:

②推断:的值为  

(2)类比探究:如图(2),在矩形中,为常数).将矩形沿折叠,使点落在边上的点处,得到四边形于点,连接于点.试探究之间的数量关系,并说明理由;

(3)拓展应用:在(2)的条件下,连接,当时,若,求的长.

来源:2019年湖北省襄阳市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

操作体验:如图,在矩形中,点分别在边上,将矩形沿直线折叠,使点恰好与点重合,点落在点处.点为直线上一动点(不与重合),过点分别作直线的垂线,垂足分别为点,以为邻边构造平行四边形

(1)如图1,求证:

(2)特例感知:如图2,若,当点在线段上运动时,求平行四边形的周长;

(3)类比探究:若

①如图3,当点在线段的延长线上运动时,试用含的式子表示之间的数量关系,并证明;

②如图4,当点在线段的延长线上运动时,请直接用含的式子表示之间的数量关系.(不要求写证明过程)

来源:2019年湖南省岳阳市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,矩形的边.若不改变矩形的形状和大小,当矩形顶点轴的正半轴上左右移动时,矩形的另一个顶点始终在轴的正半轴上随之上下移动.

(1)当时,求点的坐标;

(2)设的中点为,连接,当四边形的面积为时,求的长;

(3)当点移动到某一位置时,点到点的距离有最大值,请直接写出最大值,并求此时的值.

来源:2019年湖南省益阳市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图一,在射线的一侧以为一条边作矩形,点是线段上一动点(不与点重合),连结,过点的垂线交射线于点,连接

(1)求的大小;

(2)问题探究:动点在运动的过程中,

①是否能使为等腰三角形,如果能,求出线段的长度;如果不能,请说明理由.

的大小是否改变?若不改变,请求出的大小;若改变,请说明理由.

(3)问题解决:

如图二,当动点运动到的中点时,的交点为的中点为,求线段的长度.

来源:2019年湖南省湘潭市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,在等边中,,动点从点出发以的速度沿匀速运动.动点同时从点出发以同样的速度沿的延长线方向匀速运动,当点到达点时,点同时停止运动.设运动时间为.过点,连接边于.以为边作平行四边形

(1)当为何值时,为直角三角形;

(2)是否存在某一时刻,使点的平分线上?若存在,求出的值,若不存在,请说明理由;

(3)求的长;

(4)取线段的中点,连接,将沿直线翻折,得△,连接,当为何值时,的值最小?并求出最小值.

来源:2019年湖南省衡阳市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图1,正方形的边在同一条直线上,且,取的中点,连接

(1)试证明,并求的值.

(2)如图2,将图1中的正方形变为菱形,设,其它条件不变,问(1)中的值有变化吗?若有变化,求出该值(用含的式子表示);若无变化,说明理由.

来源:2019年山东省淄博市中考数学试卷(a卷)
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,在正方形中,为对角线上一动点,连接,过点作,交直线于点点从点出发,沿着方向以每秒的速度运动,当点与点重合时,运动停止.设的面积为点的运动时间为秒.

(1)求证:

(2)求之间关系的函数表达式,并写出自变量的取值范围;

(3)求面积的最大值.

来源:2019年山东省威海市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

已知:如图,在四边形中,垂直平分 .点从点出发,沿方向匀速运动,速度为;同时,点从点出发,沿方向匀速运动,速度为;当一个点停止运动,另一个点也停止运动.过点,交于点,过点,分别交于点.连接.设运动时间为,解答下列问题:

(1)当为何值时,点的平分线上?

(2)设四边形的面积为,求的函数关系式;

(3)在运动过程中,是否存在某一时刻,使四边形的面积最大?若存在,求出的值;若不存在,请说明理由;

(4)连接,在运动过程中,是否存在某一时刻,使?若存在,求出的值;若不存在,请说明理由.

来源:2019年山东省青岛市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

初中数学四边形综合题解答题