如图1,在等腰直角三角形 ADC 中, ∠ ADC = 90 ° , AD = 4 .点 E 是 AD 的中点,以 DE 为边作正方形 DEFG ,连接 AG , CE .将正方形 DEFG 绕点 D 顺时针旋转,旋转角为 α ( 0 ° < α < 90 ° ) .
(1)如图2,在旋转过程中,
①判断 ΔAGD 与 ΔCED 是否全等,并说明理由;
②当 CE = CD 时, AG 与 EF 交于点 H ,求 GH 的长.
(2)如图3,延长 CE 交直线 AG 于点 P .
①求证: AG ⊥ CP ;
②在旋转过程中,线段 PC 的长度是否存在最大值?若存在,求出最大值;若不存在,请说明理由.
计算:.
(1) 求的值:;
某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓时单价为40元,设第二个月单价降低x元。 (1)填表(不需化简) (2)如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?
如图,将正方形沿图中虚线(其中x<y)剪成①②③④四块图形,用这四块图形恰能拼成一个矩形(非正方形)(1)画出拼成的矩形的简图;(2)求的值。
在国家政策的宏观调控下,某市的商品房成交价由今年3月的14000元/㎡下降到5月份的12600元/㎡。 (1)问4、5两月平均每月降价的百分率约是多少?(参考数据:≈0.95) (2)如果房价继续回落,按此降价的百分率,你预计到7月份该市的商品房成交均价是否会跌破10000元/㎡?请说明理由。