如图1,在等腰直角三角形 ADC 中, ∠ ADC = 90 ° , AD = 4 .点 E 是 AD 的中点,以 DE 为边作正方形 DEFG ,连接 AG , CE .将正方形 DEFG 绕点 D 顺时针旋转,旋转角为 α ( 0 ° < α < 90 ° ) .
(1)如图2,在旋转过程中,
①判断 ΔAGD 与 ΔCED 是否全等,并说明理由;
②当 CE = CD 时, AG 与 EF 交于点 H ,求 GH 的长.
(2)如图3,延长 CE 交直线 AG 于点 P .
①求证: AG ⊥ CP ;
②在旋转过程中,线段 PC 的长度是否存在最大值?若存在,求出最大值;若不存在,请说明理由.
彤彤和朵朵玩纸牌游戏.下图是同一副扑克中的4张扑克牌的正面,将它们正面朝下洗匀后放在桌上,彤彤先从中抽出一张,朵朵从剩余的3张牌中也抽出一张. 彤彤说:若抽出的两张牌的数字都是偶数,你获胜;否则,我获胜. (1)请用树状图(或列表)表示出两人抽牌可能出现的所有结果; (2)若按彤彤说的规则进行游戏,这个游戏公平吗?请说明理由.
二次函数y=ax2+bx+c的部分对应值如下表:
(1)二次函数图象所对应的顶点坐标为. (2)当x=4时,y=. (3)由二次函数的图象可知,当函数值y<0时,x的取值范围是.
如图,在Rt△OAB中,∠OAB=90°,且点B的坐标为(4,2). (1)画出△OAB绕点O逆时针旋转90°后的△OA1B1; (2)求点A旋转到点A1所经过的路线长.
如图,已知CD是Rt△ABC斜边上的高,AC=4,BC=3,计算cos∠BCD的值.
如图,已知⊙O的半径为5,弦AB=8,OC⊥AB于C,求OC的长.