如图,在平面直角坐标系中,四边形OABC的边OC在x轴上,OA在y轴上.O为坐标原点,AB//OC,线段OA,AB的长分别是方程x2-9x+20=0的两个根(OA<AB),tan∠OCB=43.
(1)求点B,C的坐标;
(2)P为OA上一点,Q为OC上一点,OQ=5,将ΔPOQ翻折,使点O落在AB上的点O'处,双曲线y=kx的一个分支过点O'.求k的值;
(3)在(2)的条件下,M为坐标轴上一点,在平面内是否存在点N,使以O',Q,M,N为顶点四边形为矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.
(本题5分)观察右图,每个小正方形的边长均为1, 求:图中阴影正方形的面积是多少?它的边长是多少?
(本题10分)化简 (1) (2) (3)先化简,再求值 :,其中
(本题4分)把下列各数在数轴上表示出来,并把它们按从小到大的顺序用“<”连接起来: ,-2.5,,
(本题满分14分,其中第(1)题4分,第(2)题的第、小题分别为4分、6分) 如图1,在△ABC中,已知AB=15,cosB=,tanC=.点D为边BC上的动点(点D不与B、C重合),以D为圆心,BD为半径的⊙D交边AB于点E. (1)设BD=x,AE=y,求与的函数关系式,并写出函数定域义; (2)如图2,点F为边AC上的动点,且满足BD=CF,联结DF. ①当△ABC和△FDC相似时,求⊙D的半径; ② 当⊙D与以点F为圆心,FC为半径⊙F外切时,求⊙D的半径.
(本题满分12分,其中第(1)小题5分,第(2)小题4分,第(3)小题3分) 已知抛物线过点A(-1,0),B(4,0),P(5,3),抛物线与y轴交于点C. (1)求二次函数的解析式; (2)求tan∠APC的值; (3)在抛物线上求一点Q,过Q点作x轴的垂线,垂足为H,使得∠BQH=∠APC.