晚饭后,小聪和小军在社区广场散步,小聪问小军:“你有多高?”小军一时语塞,小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高,于是,两人在灯下沿直线NQ移动,如图,当小聪正好站在广场的A点(距N点5块地砖长)时,其影长AD恰好为1块地砖长;当小军正好站在广场的B点(距N点9块地砖长)时,其影长BF恰好为2块地砖长,已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC为1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ,请你根据以上信息,求出小军身高BE的长(结果精确到0.01米)
如图,AF平分∠BAC,DE平分∠BDF,且∠1=∠2,试说明DE∥AF,DF∥AC.
如图,有两堵墙,要测量地面上所形成的∠AOB的度数,但人又不能进入围墙,只能站在墙外.如何测量(运用本章知识)?
如图所示,村庄A要从河流l引水入村庄,需修一条水渠,请你画出修建水渠的路线图,并求出水渠的最短长度,(比例尺为1:200000),你能用所学的知识解决吗?
如图所示,已知:BC是从直线AB上出发的一条射线,BE平分∠ABC,∠EBF=90°.求证:BF平分∠CBD.
如图,已知直线AB、CD、EF相交于O点,∠COB=90°,∠AOE:∠AOD=3:5,求∠BOF,∠DOF的度数.