如图1,正方形ABDE和BCFG的边AB,BC在同一条直线上,且AB=2BC,取EF的中点M,连接MD,MG,MB.
(1)试证明DM⊥MG,并求MBMG的值.
(2)如图2,将图1中的正方形变为菱形,设∠EAB=2α(0<α<90°),其它条件不变,问(1)中MBMG的值有变化吗?若有变化,求出该值(用含α的式子表示);若无变化,说明理由.
生活中,有人喜欢把传送的便条折成形状,折叠过程是这样的(阴影部分表示纸条的反面):如果由信纸折成的长方形纸条(图①)长为,宽为,分别回答下列问题:(1)为了保证能折成图④的形状(即纸条两端均超出点),试求的取值范围.(2)如果不但要折成图④的形状,而且为了美观,希望纸条两端超出点的长度相等,即最终图形是轴对称图形,试求在开始折叠时起点与点的距离(用表示)
如图已知∠AOB,OA=OB,点E在OB上,四边形AEBF是矩形,请你只用无刻度的直尺画出∠AOB的角平分线,并请证明你所画的是正确的。(保留作图痕迹)
某市篮球队到市一中选拔一名队员.教练对王亮和李刚两名同学进行5次3分投篮测试,每人每次投5个球,下图记录的是这两名同学5次投篮中所投中的个数.
(1)请你根据图中的数据,填写右表.(2)你认为谁的成绩比较稳定,为什么?(3)若你是教练,你打算选谁?简要说明理由.
观察下列各式:(1)由此可以推断 。(2)请用上面的规律解方程:
解下列不等式组: