初中数学

如图1,正方形的边在同一条直线上,且,取的中点,连接

(1)试证明,并求的值.

(2)如图2,将图1中的正方形变为菱形,设,其它条件不变,问(1)中的值有变化吗?若有变化,求出该值(用含的式子表示);若无变化,说明理由.

来源:2019年山东省淄博市中考数学试卷(a卷)
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,在正方形中,为对角线上一动点,连接,过点作,交直线于点点从点出发,沿着方向以每秒的速度运动,当点与点重合时,运动停止.设的面积为点的运动时间为秒.

(1)求证:

(2)求之间关系的函数表达式,并写出自变量的取值范围;

(3)求面积的最大值.

来源:2019年山东省威海市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

在矩形中,连结,点从点出发,以每秒1个单位的速度沿着的路径运动,运动时间为(秒.过点于点,在矩形的内部作正方形

(1)如图,当时,

①若点的内部,连结,求证:

②当时,设正方形的重叠部分面积为,求的函数关系式;

(2)当时,若直线将矩形的面积分成两部分,求的值.

来源:2019年四川省资阳市中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

如图1,在正方形中,平分,交于点,过点,交的延长线于点,交的延长线于点

(1)求证:

(2)如图2,连接,求证:平分

(3)如图3,连接于点,求的值.

来源:2019年四川省眉山市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

箭头四角形

模型规律

如图1,延长于点,则

因为凹四边形形似箭头,其四角具有“”这个规律,所以我们把这个模型叫做“箭头四角形”.

模型应用

(1)直接应用:①如图2,  

②如图3,的2等分线(即角平分线)交于点,已知,则  

③如图4,分别为的2019等分线,2,3,,2017,.它们的交点从上到下依次为.已知,则  度.

(2)拓展应用:如图5,在四边形中,是四边形内一点,且.求证:四边形是菱形.

来源:2019年四川省达州市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

我们知道,各个角都相等,各条边都相等的多边形叫做正多边形.对一个各条边都相等的凸多边形(边数大于,可以由若干条对角线相等判定它是正多边形.例如,各条边都相等的凸四边形,若两条对角线相等,则这个四边形是正方形.

(1)已知凸五边形的各条边都相等.

①如图1,若,求证:五边形是正五边形;

②如图2,若,请判断五边形是不是正五边形,并说明理由:

(2)判断下列命题的真假.(在括号内填写“真”或“假”

如图3,已知凸六边形的各条边都相等.

①若,则六边形是正六边形;  

②若,则六边形是正六边形.  

来源:2019年浙江省台州市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.

(1)如图1,在中,的角平分线,分别是上的点.

求证:四边形是邻余四边形.

(2)如图2,在的方格纸中,在格点上,请画出一个符合条件的邻余四边形,使是邻余线,在格点上.

(3)如图3,在(1)的条件下,取中点,连结并延长交于点,延长于点.若的中点,,求邻余线的长.

来源:2019年浙江省宁波市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,为原点,点,点轴的正半轴上,.矩形的顶点分别在上,

(Ⅰ)如图①,求点的坐标;

(Ⅱ)将矩形沿轴向右平移,得到矩形,点的对应点分别为.设,矩形重叠部分的面积为

①如图②,当矩形重叠部分为五边形时,分别与相交于点,试用含有的式子表示,并直接写出的取值范围;

②当时,求的取值范围(直接写出结果即可).

来源:2019年天津市中考数学试卷
  • 更新:2021-01-03
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,四边形是矩形,点,点,点.以点为中心,顺时针旋转矩形,得到矩形,点的对应点分别为

(Ⅰ)如图①,当点落在边上时,求点的坐标;

(Ⅱ)如图②,当点落在线段上时,交于点

①求证

②求点的坐标.

(Ⅲ)记为矩形对角线的交点,的面积,求的取值范围(直接写出结果即可).

来源:2018年天津市中考数学试卷
  • 更新:2021-01-03
  • 题型:未知
  • 难度:未知

综合与实践

问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形中,延长线上一点,且,连接,交于点,以为一边在的左下方作正方形,连接.试判断线段的位置关系.

探究展示:勤奋小组发现,垂直平分,并展示了如下的证明方法:

证明:

四边形是矩形,

.(依据

边上的中线,

.(依据

垂直平分

反思交流:

(1)①上述证明过程中的“依据1”“依据2”分别是指什么?

②试判断图1中的点是否在线段的垂直平分线上,请直接回答,不必证明;

(2)创新小组受到勤奋小组的启发,继续进行探究,如图2,连接,以为一边在的左下方作正方形,发现点在线段的垂直平分线上,请你给出证明;

探索发现:

(3)如图3,连接,以为一边在的右上方作正方形,可以发现点,点都在线段的垂直平分线上,除此之外,请观察矩形和正方形的顶点与边,你还能发现哪个顶点在哪条边的垂直平分线上,请写出一个你发现的结论,并加以证明.

来源:2018年山西省中考数学试卷
  • 更新:2021-01-04
  • 题型:未知
  • 难度:未知

已知:如图,四边形中,是对角线上一点,且

(1)求证:四边形是菱形;

(2)如果,且,求证:四边形是正方形.

来源:2017年上海市中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

问题发现

(1)如图(1),四边形 ABCD 中,若 AB = AD CB = CD ,则线段 BD AC 的位置关系为    

拓展探究

(2)如图(2),在 Rt Δ ABC 中,点 F 为斜边 BC 的中点,分别以 AB AC 为底边,在 Rt Δ ABC 外部作等腰三角形 ABD 和等腰三角形 ACE ,连接 FD FE ,分别交 AB AC 于点 M N ,试猜想四边形 FMAN 的形状,并说明理由;

解决问题

(3)如图(3),在正方形 ABCD 中, AB = 2 2 ,以点 A 为旋转中心将正方形 ABCD 旋转 60 ° ,得到正方形 AB ' C ' D ' ,请直接写出 BD ' 的长度.

来源:2016年河南省中考数学试卷(备用卷)
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图,在矩形中,为边上一点,,连接.动点从点同时出发,点的速度沿向终点运动;点的速度沿折线向终点运动.设点运动的时间为,在运动过程中,点,点经过的路线与线段围成的图形面积为

(1)    

(2)求关于的函数解析式,并写出自变量的取值范围;

(3)当时,直接写出的值.

来源:2019年吉林省中考数学试卷
  • 更新:2021-01-04
  • 题型:未知
  • 难度:未知

性质探究

如图①,在等腰三角形中,,则底边与腰的长度之比为  

理解运用

(1)若顶角为的等腰三角形的周长为,则它的面积为  

(2)如图②,在四边形中,

①求证:

②在边上分别取中点,连接.若,直接写出线段的长.

类比拓展

顶角为的等腰三角形的底边与一腰的长度之比为  (用含的式子表示).

来源:2019年吉林省中考数学试卷
  • 更新:2021-01-04
  • 题型:未知
  • 难度:未知

在正方形中,是边上一点(点不与点重合),连结

【感知】如图①,过点于点.易证.(不需要证明)

【探究】如图②,取的中点,过点于点,交于点

(1)求证:

(2)连结,若,则的长为  

【应用】如图③,取的中点,连结.过点于点,连结.若,则四边形的面积为  

来源:2018年吉林省长春市中考数学试卷
  • 更新:2021-01-03
  • 题型:未知
  • 难度:未知

初中数学四边形综合题解答题