如图,在矩形ABCD中,AD=4cm,AB=3cm,E为边BC上一点,BE=AB,连接AE.动点P、Q从点A同时出发,点P以2cm/s的速度沿AE向终点E运动;点Q以2cm/s的速度沿折线AD-DC向终点C运动.设点Q运动的时间为x(s),在运动过程中,点P,点Q经过的路线与线段PQ围成的图形面积为y(cm2).
(1)AE= cm,∠EAD= °;
(2)求y关于x的函数解析式,并写出自变量x的取值范围;
(3)当PQ=54cm时,直接写出x的值.
一台拖拉机工作时,每小时耗油6L,已知油箱中有油40L. (1)设拖拉机的工作时间为t小时,油箱中的剩余油量为Q升,求出Q(升)与t(小时)之间的函数关系式; (2)求出自变量的取值范围; (3)当油箱内剩余油10L时,这台拖拉机已工作了几小时?
已知:如图,E是正方形ABCD对角线BD上一点,EM⊥BC,EN⊥CD,垂足分别是M、N. 求证:AE=MN
已知,如图,在ABCD中,E、F是对角线AC上的两点,且AE=CF, 求证:DE=BF
如图所示,有一条小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,则这条小路的面积是多少?
已知m=-2,求代数式m2+4m-9的值.