初中数学

如图,四边形 ABCD 是平行四边形, BE / / DF 且分别交对角线 AC 于点 E F

(1)求证: ΔABE ΔCDF

(2)当四边形 ABCD 分别是矩形和菱形时,请分别说出四边形 BEDF 的形状.(无需说明理由)

来源:2021年内蒙古呼和浩特市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

如图, ABCD 的对角线 AC BD 相交于点 O ΔOAB 是等边三角形, AB = 4

(1)求证: ABCD 是矩形;

(2)求 AD 的长.

来源:2021年湖南省长沙市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, D = 60 ° ,对角线 AC BC O 经过点 A B ,与 AC 交于点 M ,连接 AO 并延长与 O 交于点 F ,与 CB 的延长线交于点 E AB = EB

(1)求证: EC O 的切线;

(2)若 AD = 2 3 ,求 AM ̂ 的长(结果保留 π )

来源:2020年山东省烟台市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在 O 中, AB O 的直径, C O 上一点, P BC ̂ 的中点,过点 P AC 的垂线,交 AC 的延长线于点 D ,连接 OP

(1)求证: DP O 的切线;

(2)若 AC = 5 sin APC = 5 13 ,求 AP 的长.

来源:2020年新疆生产建设兵团中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图所示, AB O 的直径, AD BC 分别切 O A B 两点, CD O 有公共点 E ,且 AD = DE

(1)求证: CD O 的切线;

(2)若 AB = 12 BC = 4 ,求 AD 的长.

来源:2020年西藏中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 内接于 O AB = 17 CD = 10 A = 90 ° cos B = 3 5 ,求 AD 的长.

来源:2018年江苏省无锡市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图, AB O 的直径, C O 上一点, AD 和过点 C 的切线互相垂直,垂足为 D ,且交 O 于点 E .连接 OC BE ,相交于点 F

(1)求证: EF = BF

(2)若 DC = 4 DE = 2 ,求直径 AB 的长.

来源:2018年江苏省南通市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,在正方形 ABCD 中,点 G 在对角线 BD 上(不与点 B D 重合), GE DC 于点 E GF BC 于点 F ,连接 AG

(1)写出线段 AG GE GF 长度之间的数量关系,并说明理由;

(2)若正方形 ABCD 的边长为1, AGF = 105 ° ,求线段 BG 的长.

来源:2017年浙江省杭州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,点 P 在矩形 ABCD 的对角线 AC 上,且不与点 A C 重合,过点 P 分别作边 AB AD 的平行线,交两组对边于点 E F G H

(1)求证: ΔPHC ΔCFP

(2)证明四边形 PEDH 和四边形 PFBG 都是矩形,并直接写出它们面积之间的关系.

来源:2016年浙江省台州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,已知 O 的直径 AB = 10 ,弦 AC = 6 BAC 的平分线交 O 于点 D ,过点 D DE AC AC 的延长线于点 E

(1)求证: DE O 的切线.

(2)求 DE 的长.

来源:2016年浙江省宁波市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

四边形 ABCD 的对角线交于点 E ,有 AE = EC BE = ED ,以 AB 为直径的半圆过点 E ,圆心为 O

(1)利用图1,求证:四边形 ABCD 是菱形.

(2)如图2,若 CD 的延长线与半圆相切于点 F ,已知直径 AB = 8

①连接 OE ,求 ΔOBE 的面积.

②求弧 AE 的长.

来源:2016年浙江省金华市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”

(1)概念理解:

请你根据上述定义举一个等邻角四边形的例子;

(2)问题探究:

如图1,在等邻角四边形 ABCD 中, DAB = ABC AD BC 的中垂线恰好交于 AB 边上一点 P ,连接 AC BD ,试探究 AC BD 的数量关系,并说明理由;

(3)应用拓展:

如图2,在 Rt Δ ABC Rt Δ ABD 中, C = D = 90 ° BC = BD = 3 AB = 5 ,将 Rt Δ ABD 绕着点 A 顺时针旋转角 α ( 0 ° < α < BAC ) 得到 Rt AB ' D ' (如图 3 ) ,当凸四边形 AD ' BC 为等邻角四边形时,求出它的面积.

来源:2016年浙江省嘉兴市(舟山市)中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

已知 ΔABC 中, A = 90 °

(1)请在图1中作出 BC 边上的中线(保留作图痕迹,不写作法);

(2)如图2,设 BC 边上的中线为 AD ,求证: BC = 2 AD

来源:2018年四川省攀枝花市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,已知 AB CD O 的直径,过点 C O 的切线交 AB 的延长线于点 P O 的弦 DE AB 于点 F ,且 DF = EF

(1)求证: C O 2 = OF · OP

(2)连接 EB CD 于点 G ,过点 G GH AB 于点 H ,若 PC = 4 2 PB = 4 ,求 GH 的长.

来源:2018年四川省泸州市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图1,在四边形 BCDE 中, BC CD DE CD AB AE ,垂足分别为 C D A BC AC ,点 M N F 分别为 AB AE BE 的中点,连接 MN MF NF

(1)如图2,当 BC = 4 DE = 5 tan FMN = 1 时,求 AC AD 的值;

(2)若 tan FMN = 1 2 BC = 4 ,则可求出图中哪些线段的长?写出解答过程;

(3)连接 CM DN CF DF .试证明 ΔFMC ΔDNF 全等;

(4)在(3)的条件下,图中还有哪些其它的全等三角形?请直接写出.

来源:2018年山东省威海市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

初中数学矩形的判定与性质解答题