四边形 ABCD 的对角线交于点 E ,有 AE = EC , BE = ED ,以 AB 为直径的半圆过点 E ,圆心为 O .
(1)利用图1,求证:四边形 ABCD 是菱形.
(2)如图2,若 CD 的延长线与半圆相切于点 F ,已知直径 AB = 8 .
①连接 OE ,求 ΔOBE 的面积.
②求弧 AE 的长.
解方程组:
如图,AB∥CD,EF分别交AB、CD于M、N ∠EMB=50°,MG平分∠BMF,MG交CD于G.求∠1的度数.
根据提示填空(或填上每步推理的理由) 已知:如图,∠1=∠2、∠3=∠4,求证:∠5=∠A. 证明:∵∠1=∠2.(已知) ∠3=∠4,(已知) 又∵∠2=∠3( ) ∴∠1=∠4.( ) ∴_______//_______( ) ∴∠5=∠A( )
根据提示填空(或填上每步推理的理由) 如图,∠1=∠2,∠3=108°.求∠4的度数。 解:∵∠1=∠2(已知) ∴AB∥CD() ∴∠3+∠4=180°() ∵∠3=108°(已知) ∴∠4=180°-108°=72°