如图,已知 是矩形 的对角线.
(1)用直尺和圆规作线段 的垂直平分线,分别交 、 于 、 (保留作图痕迹,不写作法和证明).
(2)连接 , ,问四边形 是什么四边形?请说明理由.
问题探究:
小红遇到这样一个问题:如图1, 中, , , 是中线,求 的取值范围.她的做法是:延长 到 ,使 ,连接 ,证明 ,经过推理和计算使问题得到解决.
请回答:(1)小红证明 的判定定理是: ;
(2) 的取值范围是 ;
方法运用:
(3)如图2, 是 的中线,在 上取一点 ,连结 并延长交 于点 ,使 ,求证: .
(4)如图3,在矩形 中, ,在 上取一点 ,以 为斜边作 ,且 ,点 是 的中点,连接 , ,求证: .
如图,矩形 在平面直角坐标系的第一象限内, 与 轴平行, ,点 的坐标为 , 是 的中点;反比例函数 图象经过点 和点 ,过点 的直线 与反比例函数图象交于点 ,点 的纵坐标为4.
(1)求反比例函数的解析式和点 的坐标;
(2)求直线 的解析式;
(3)直接写出 时,自变量 的取值范围.
如图,四边形 是矩形, 、 分别是线段 、 上的点,点 是 与 的交点.若将 沿直线 折叠,则点 与点 重合.
(1)求证:四边形 是菱形;
(2)若 , ,求 的值.
如图,将矩形 沿 折叠,使点 落在 边上的点 处,过点 作 交 于点 ,连接 .
(1)求证:四边形 是菱形;
(2)探究线段 、 、 之间的数量关系,并说明理由;
(3)若 , ,求 的长.
在一次数学研究性学习中,小兵将两个全等的直角三角形纸片 和 拼在一起,使点 与点 重合,点 与点 重合(如图 ,其中 , , ,并进行如下研究活动.
活动一:将图1中的纸片 沿 方向平移,连结 , (如图 ,当点 与点 重合时停止平移.
[思考]图2中的四边形 是平行四边形吗?请说明理由.
[发现]当纸片 平移到某一位置时,小兵发现四边形 为矩形(如图 .求 的长.
活动二:在图3中,取 的中点 ,再将纸片 绕点 顺时针方向旋转 度 ,连结 , (如图 .
[探究]当 平分 时,探究 与 的数量关系,并说明理由.
如图,将矩形 沿对角线 翻折,点 落在点 处, 交 于 .
(1)求证: ;
(2)若 , ,求图中阴影部分的面积.
四边形 为矩形, 是 延长线上的一点.
(1)若 ,如图1,求证:四边形 为平行四边形;
(2)若 ,点 是 上的点, , 于点 ,如图2,求证: 是等腰直角三角形.
如图,四边形 是矩形, , ,以 为一边向矩形外部作等腰直角 , .点 在线段 上,且 ,点 沿折线 运动,点 沿折线 运动(与点 不重合),在运动过程中始终保持线段 .设 与 之间的距离为 .
(1)若 .
①如图1,当点 在线段 上时,若四边形 的面积为48,则 的值为 ;
②在运动过程中,求四边形 的最大面积;
(2)如图2,若点 在线段 上时,要使四边形 的面积始终不小于50,求 的取值范围.
如图,在矩形 中, ,点 在边 上,连接 ,以 为边向右上方作正方形 ,作 ,垂足为 ,连接 .
(1)求证: ;
(2)当 为何值时, 的面积最大?
已知:如图,矩形 的对角线 , 相交于点 , , .
(1)求矩形对角线的长;
(2)过 作 于点 ,连结 .记 ,求 的值.
如图,在矩形 中,点 在边 上,点 在 的延长线上,且 .
求证:(1) ;
(2)四边形 是平行四边形.
如图,在平面直角坐标系中,矩形 的两边 、 分别在坐标轴上,且 , ,连接 .反比例函数 的图象经过线段 的中点 ,并与 、 分别交于点 、 .一次函数 的图象经过 、 两点.
(1)分别求出一次函数和反比例函数的表达式;
(2)点 是 轴上一动点,当 的值最小时,点 的坐标为 .
如图,矩形 中, , ,将此矩形绕点 顺时针方向旋转 得到矩形 ,点 在边 上.
(1)若 , ,求在旋转过程中,点 到点 所经过路径的长度;
(2)将矩形 继续绕点 顺时针方向旋转得到矩形 ,点 在 的延长线上,设边 与 交于点 ,若 ,求 的值.