如图,四边形 是矩形 ,要在矩形 内作一个以 为边的正方形 ,某位同学的作法如下:
①作 的平分线 . 交 于点 ;
②以点 为圆心, 长为半径画弧,交 于点 ,连接 .
(1)求证:四边形 是正方形;
(2)若 ,求图中阴影部分的面积.
定义:对角线互相垂直且相等的四边形叫做垂等四边形.
(1)下面四边形是垂等四边形的是 ;(填序号)
①平行四边形;②矩形;③菱形;④正方形
(2)图形判定:如图1,在四边形 中, , ,过点 作 垂线交 的延长线于点 ,且 ,证明:四边形 是垂等四边形.
(3)由菱形面积公式易知性质:垂等四边形的面积等于两条对角线乘积的一半.应用:在图2中,面积为24的垂等四边形 内接于 中, .求 的半径.
如图,将矩形 沿 折叠,使点 落在 边上的点 处,过点 作 交 于点 ,连接 .
(1)求证:四边形 是菱形;
(2)探究线段 、 、 之间的数量关系,并说明理由;
(3)若 , ,求 的长.
如图,在矩形 中, ,点 是 边上的一点,将 沿着 折叠,点 刚好落在 边上点 处;点 在 上,将 沿着 折叠,点 刚好落在 上点 处,此时 ,
(1)求证: ;
(2)求 的长;
(3)求 的值.
如图,已知矩形 中,点 , 分别是 , 上的点, ,且 .
(1)求证: ;
(2)若 ,求 .
如图,四边形是矩形,是边上一点,点在的延长线上,且.
(1)求证:四边形是平行四边形;
(2)连接,若,,,求四边形的面积.
在一次数学研究性学习中,小兵将两个全等的直角三角形纸片 和 拼在一起,使点 与点 重合,点 与点 重合(如图 ,其中 , , ,并进行如下研究活动.
活动一:将图1中的纸片 沿 方向平移,连结 , (如图 ,当点 与点 重合时停止平移.
[思考]图2中的四边形 是平行四边形吗?请说明理由.
[发现]当纸片 平移到某一位置时,小兵发现四边形 为矩形(如图 .求 的长.
活动二:在图3中,取 的中点 ,再将纸片 绕点 顺时针方向旋转 度 ,连结 , (如图 .
[探究]当 平分 时,探究 与 的数量关系,并说明理由.
在中,,,.以为边作周长为18的矩形,,分别为,的中点,连接.请你画出图形,并直接写出线段的长.
如图,在平面直角坐标系中,矩形 的边 交 轴于点 , 轴,反比例函数 的图象经过点 ,点 的坐标为 , .
(1)求反比例函数的解析式;
(2)点 为 轴上一动点,当 的值最小时,求出点 的坐标.
已知:如图,矩形 的对角线 , 相交于点 , , .
(1)求矩形对角线的长;
(2)过 作 于点 ,连结 .记 ,求 的值.
如图,在矩形 中,点 在边 上,点 在 的延长线上,且 .
求证:(1) ;
(2)四边形 是平行四边形.
如图,在平面直角坐标系中,矩形 的两边 、 分别在坐标轴上,且 , ,连接 .反比例函数 的图象经过线段 的中点 ,并与 、 分别交于点 、 .一次函数 的图象经过 、 两点.
(1)分别求出一次函数和反比例函数的表达式;
(2)点 是 轴上一动点,当 的值最小时,点 的坐标为 .
如图,矩形 中, , ,将此矩形绕点 顺时针方向旋转 得到矩形 ,点 在边 上.
(1)若 , ,求在旋转过程中,点 到点 所经过路径的长度;
(2)将矩形 继续绕点 顺时针方向旋转得到矩形 ,点 在 的延长线上,设边 与 交于点 ,若 ,求 的值.
如图,矩形 中, , ,点 、 分别在 、 上,且 .
(1)求证:四边形 是菱形;
(2)求线段 的长.