如图,在平面直角坐标系中,矩形 OABC 的边 BC 交 x 轴于点 D , AD ⊥ x 轴,反比例函数 y = k x ( x > 0 ) 的图象经过点 A ,点 D 的坐标为 ( 3 , 0 ) , AB = BD .
(1)求反比例函数的解析式;
(2)点 P 为 y 轴上一动点,当 PA + PB 的值最小时,求出点 P 的坐标.
解方程:2-=-
化简求值:,其中
计算:
化简:
已知二次函数y=-x2+4x+5图像交x轴于点A、B,交y轴于点C,点D是该函数图像上一点,且点D的横坐标为4,连BD,点P是AB上一动点(不与点A重合),过P作PQ⊥AB交射线AD于点Q,以PQ为一边在PQ的右侧作正方形PQMN.设点P的坐标为(t,0).(1)求点B,C,D的坐标及射线AD的解析式;(2)在AB上是否存在点P,使⊿OCM为等腰三角形?若存在,求正方形PQMN的边长;若不存在,请说明理由;(3)设正方形PQMN与⊿ABD重叠部分面积为s,求s与t的函数关系式.