初中数学

如图,在 ΔABC 中, C = 90 ° ,点 O AC 上,以 OA 为半径的 O AB 于点 D BD 的垂直平分线交 BC 于点 E ,交 BD 于点 F ,连接 DE

(1)判断直线 DE O 的位置关系,并说明理由;

(2)若 AC = 6 BC = 8 OA = 2 ,求线段 DE 的长.

来源:2017年四川省甘孜州中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, C = 90 ° AC = 3 BC = 4 D E 分别是斜边 AB 、直角边 BC 上的点,把 ΔABC 沿着直线 DE 折叠.

(1)如图1,当折叠后点 B 和点 A 重合时,用直尺和圆规作出直线 DE ;(不写作法和证明,保留作图痕迹)

(2)如图2,当折叠后点 B 落在 AC 边上点 P 处,且四边形 PEBD 是菱形时,求折痕 DE 的长.

来源:2018年黑龙江省绥化市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

(1)如图1,已知 EK 垂直平分 BC ,垂足为 D AB EK 相交于点 F ,连接 CF .求证: AFE = CFD

(2)如图2,在 Rt Δ GMN 中, M = 90 ° P MN 的中点.

①用直尺和圆规在 GN 边上求作点 Q ,使得 GQM = PQN (保留作图痕迹,不要求写作法);

②在①的条件下,如果 G = 60 ° ,那么 Q GN 的中点吗?为什么?

来源:2018年江苏省常州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

两个城镇 A B 与一条公路 CD ,一条河流 CE 的位置如图所示,某人要修建一避暑山庄,要求该山庄到 A B 的距离必须相等,到 CD CE 的距离也必须相等,且在 DCE 的内部,请画出该山庄的位置 P .(不要求写作法,保留作图痕迹. )

来源:2017年四川省自贡市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

平行四边形 ABCD 中, A = 60 ° AB = 2 AD BD 的中垂线分别交 AB CD 于点 E F ,垂足为 O

(1)求证: OE = OF

(2)若 AD = 6 ,求 tan ABD 的值.

来源:2018年广西百色市中考数学试卷
  • 更新:2021-05-19
  • 题型:未知
  • 难度:未知

阅读与思考

如图是小宇同学的数学日记,请仔细阅读,并完成相应的任务.

× × × 日星期日

没有直角尺也能作出直角

今天,我在书店一本书上看到下面材料:木工师傅有一块如图①所示的四边形木板,他已经在木板上画出一条裁割线 AB ,现根据木板的情况,要过 AB 上的一点 C ,作出 AB 的垂线,用锯子进行裁割,然而手头没有直角尺,怎么办呢?

办法一:如图①,可利用一把有刻度的直尺在 AB 上量出 CD = 30 cm ,然后分别以 D C 为圆心,以 50 cm 40 cm 为半径画圆弧,两弧相交于点 E ,作直线 CE ,则 DCE 必为 90 °

办法二:如图②,可以取一根笔直的木棒,用铅笔在木棒上点出 M N 两点,然后把木棒斜放在木板上,使点 M 与点 C 重合,用铅笔在木板上将点 N 对应的位置标记为点 Q ,保持点 N 不动,将木棒绕点 N 旋转,使点 M 落在 AB 上,在木板上将点 M 对应的位置标记为点 R .然后将 RQ 延长,在延长线上截取线段 QS = MN ,得到点 S ,作直线 SC ,则 RCS = 90 °

我有如下思考:以上两种办法依据的是什么数学原理呢?我还有什么办法不用直角尺也能作出垂线呢?

任务:

(1)填空:“办法一”依据的一个数学定理是     

(2)根据“办法二”的操作过程,证明 RCS = 90 °

(3)①尺规作图:请在图③的木板上,过点 C 作出 AB 的垂线(在木板上保留作图痕迹,不写作法);

②说明你的作法所依据的数学定理或基本事实(写出一个即可).

来源:2020年山西省中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中,对角线 AC 的垂直平分线 EF 分别交 AD AC BC 于点 E O F ,连接 CE AF

(1)求证:四边形 AECF 为菱形;

(2)若 AB = 4 BC = 8 ,求菱形 AECF 的周长.

来源:2017年四川省巴中市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图1,在 ΔABC 中, A = 90 ° AB = AC = 2 + 1 ,点 D E 分别在边 AB AC 上,且 AD = AE = 1 ,连接 DE .现将 ΔADE 绕点 A 顺时针方向旋转,旋转角为 α ( 0 ° < α < 360 ° ) ,如图2,连接 CE BD CD

(1)当 0 ° < α < 180 ° 时,求证: CE = BD

(2)如图3,当 α = 90 ° 时,延长 CE BD 于点 F ,求证: CF 垂直平分 BD

(3)在旋转过程中,求 ΔBCD 的面积的最大值,并写出此时旋转角 α 的度数.

来源:2020年山东省潍坊市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, ACB = 90 °

(1)尺规作图(保留作图痕迹,不写作法)

①作 AC 的垂直平分线,垂足为 D

②以 D 为圆心, DA 长为半径作圆,交 AB E ( E 异于 A ) ,连接 CE

(2)探究 CE AB 的位置关系,并证明你的结论.

来源:2018年广西河池市中考数学试卷
  • 更新:2021-05-19
  • 题型:未知
  • 难度:未知

如图,在方格纸中,点 A B P 都在格点上.请按要求画出以 AB 为边的格点四边形,使 P 在四边形内部(不包括边界上),且 P 到四边形的两个顶点的距离相等.

(1)在图甲中画出一个 ABCD

(2)在图乙中画出一个四边形 ABCD ,使 D = 90 ° ,且 A 90 ° .(注:图甲、乙在答题纸上)

来源:2016年浙江省温州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,已知锐角 ΔABC 中, AC = BC

(1)请在图1中用无刻度的直尺和圆规作图:作 ACB 的平分线 CD ;作 ΔABC 的外接圆 O ;(不写作法,保留作图痕迹)

(2)在(1)的条件下,若 AB = 48 5 O 的半径为5,则 sin B =   .(如需画草图,请使用图 2 )

来源:2021年江苏省无锡市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

如图, ΔABC 中, D AB 上一点, DE AC 于点 E F AD 的中点, FG BC 于点 G ,与 DE 交于点 H ,若 FG = AF AG 平分 CAB ,连接 GE GD

(1)求证: ΔECG ΔGHD

(2)小亮同学经过探究发现: AD = AC + EC .请你帮助小亮同学证明这一结论.

(3)若 B = 30 ° ,判定四边形 AEGF 是否为菱形,并说明理由.

来源:2018年山东省泰安市中考数学试卷
  • 更新:2021-05-17
  • 题型:未知
  • 难度:未知

如图,点 P O 的直径 AB 延长线上的一点 ( PB < OB ) ,点 E 是线段 OP 的中点.

(1)尺规作图:在直径 AB 上方的圆上作一点 C ,使得 EC = EP ,连接 EC PC (保留清晰作图痕迹,不要求写作法);并证明 PC O 的切线;

(2)在(1)的条件下,若 BP = 4 EB = 1 ,求 PC 的长.

来源:2020年云南省昆明市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,已知 BD 是矩形 ABCD 的对角线.

(1)用直尺和圆规作线段 BD 的垂直平分线,分别交 AD BC E F (保留作图痕迹,不写作法和证明).

(2)连接 BE DF ,问四边形 BEDF 是什么四边形?请说明理由.

来源:2016年浙江省衢州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

已知:如图, ABC ,射线 BC 上一点 D

求作:等腰 ΔPBD ,使线段 BD 为等腰 ΔPBD 的底边,点 P ABC 内部,且点 P ABC 两边的距离相等.

来源:2018年山东省青岛市中考数学试卷
  • 更新:2021-05-17
  • 题型:未知
  • 难度:未知

初中数学线段垂直平分线的性质解答题