两个城镇 A , B 与一条公路 CD ,一条河流 CE 的位置如图所示,某人要修建一避暑山庄,要求该山庄到 A , B 的距离必须相等,到 CD 和 CE 的距离也必须相等,且在 ∠ DCE 的内部,请画出该山庄的位置 P .(不要求写作法,保留作图痕迹. )
小强和爸爸上山游玩,两人距地面的高度y(米)与小强登山时间x之间的函数图象分别如图中折线OAC和线段DE所示,根据函数图象进行以下探究:信息读取:(1)爸爸登山的速度是每分钟 米;(2)请解释图中点B的实际意义;图象理解:(3)求线段DE所表示的y与x之间的函数关系式,并写出自变量x的取值范围;(4)计算并填空:m= ;问题解决:(5)若小强提速后,他登山的速度是爸爸速度的3倍,问小强登山多长时间时开始提速?此时小强距地面的高度是多少米?
如图,已知OA⊥OB,OA=4,OB=3,以AB为边作矩形ABCD,使AD=,过点D作DE垂直OA的延长线且交于点E.(1)求证:△OAB∽△EDA;(2)当为何值时,△OAB与△EDA全等?请说明理由;并求出此时B、D两点的距离.
甲、乙、丙、丁四位同学进行一次羽毛球单打比赛,要从中选出两位同学打第一场比赛.(1)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率;(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率。
已知,如图,在R t△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D. (1)以AB边上一点O为圆心,过A,D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由; (2)若(1)中的⊙O与AB边的另一个交点为E,半径为2,AB=6,求线段AD、AE与劣弧DE所围成的图形面积.(结果保留根号和)
某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染多少台电脑?