初中数学

如图,在矩形 ABCD 中, AC BD 相交于点 O ,过点 B BF AC 于点 M ,交 CD 于点 F ,过点 D DE / / BF AC 于点 N .交 AB 于点 E ,连接 FN EM .有下列结论:①四边形 NEMF 为平行四边形;② D N 2 = MC NC ;③ ΔDNF 为等边三角形;④当 AO = AD 时,四边形 DEBF 是菱形.其中,正确结论的序号   

来源:2021年四川省雅安市中考数学试卷
  • 更新:2021-08-15
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 是平行四边形, AD = AC AD AC E AB 的中点, F AC 延长线上一点.

(1)若 ED EF ,求证: ED = EF

(2)在(1)的条件下,若 DC 的延长线与 FB 交于点 P ,试判定四边形 ACPE 是否为平行四边形?并证明你的结论(请先补全图形,再解答);

(3)若 ED = EF ED EF 垂直吗?若垂直给出证明,若不垂直说明理由.

来源:2017年山东省泰安市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图,四边形是正方形,点为对角线的中点.

(1)问题解决:如图①,连接,分别取的中点,连接,则的数量关系是   ,位置关系是  

(2)问题探究:如图②,△是将图①中的绕点按顺时针方向旋转得到的三角形,连接,点分别为的中点,连接.判断的形状,并证明你的结论;

(3)拓展延伸:如图③,△是将图①中的绕点按逆时针方向旋转得到的三角形,连接,点分别为的中点,连接.若正方形的边长为1,求的面积.

来源:2020年贵州省贵阳市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图,正方形纸片 ABCD 的边长为12,点 F AD 上一点,将 ΔCDF 沿 CF 折叠,点 D 落在点 G 处,连接 DG 并延长交 AB 于点 E .若 AE = 5 ,则 GE 的长为   

来源:2021年山东省东营市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

在四边形 ABCD 中,对角线 AC 平分 BAD

【探究发现】

(1)如图①,若 BAD = 120 ° ABC = ADC = 90 ° .求证: AD + AB = AC

【拓展迁移】

(2)如图②,若 BAD = 120 ° ABC + ADC = 180 °

①猜想 AB AD AC 三条线段的数量关系,并说明理由;

②若 AC = 10 ,求四边形 ABCD 的面积.

来源:2021年贵州省黔东南州中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

有两个内角分别是它们对角的一半的四边形叫做半对角四边形.

(1)如图1,在半对角四边形 ABCD 中, B = 1 2 D C = 1 2 A ,求 B C 的度数之和;

(2)如图2,锐角 ΔABC 内接于 O ,若边 AB 上存在一点 D ,使得 BD = BO OBA 的平分线交 OA 于点 E ,连接 DE 并延长交 AC 于点 F AFE = 2 EAF .求证:四边形 DBCF 是半对角四边形;

(3)如图3,在(2)的条件下,过点 D DG OB 于点 H ,交 BC 于点 G ,当 DH = BG 时,求 ΔBGH ΔABC 的面积之比.

来源:2017年浙江省宁波市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,四边形的边轴上,轴上.为坐标原点,,线段的长分别是方程的两个根

(1)求点的坐标;

(2)上一点,上一点,,将翻折,使点落在上的点处,双曲线的一个分支过点.求的值;

(3)在(2)的条件下,为坐标轴上一点,在平面内是否存在点,使以为顶点四边形为矩形?若存在,请直接写出点的坐标;若不存在,请说明理由.

来源:2020年黑龙江省牡丹江市、鸡西市朝鲜族学校中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,已知抛物线过点,交轴于点和点(点在点的左侧),抛物线的顶点为,对称轴轴于点,连接

(1)直接写出的值,点的坐标和抛物线对称轴的表达式;

(2)若点是抛物线对称轴上的点,当是等腰三角形时,求点的坐标;

(3)点是抛物线上的动点,连接,将沿所在的直线对折,点落在坐标平面内的点处.求当点恰好落在直线上时点的横坐标.

来源:2020年广西桂林中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图所示,拋物线轴交于两点,与轴交于点,且点的坐标为,点的坐标为,对称轴为直线.点是抛物线上一个动点,设点的横坐标为,连接

(1)求抛物线的函数表达式;

(2)当的面积等于的面积的时,求的值;

(3)在(2)的条件下,若点轴上一动点,点是抛物线上一动点,试判断是否存在这样的点,使得以点为顶点的四边形是平行四边形.若存在,请直接写出点的坐标;若不存在,请说明理由.

来源:2020年甘肃省天水市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图, ΔABC 是边长为1的等边三角形, D E 为线段 AC 上两动点,且 DBE = 30 ° ,过点 D E 分别作 AB BC 的平行线相交于点 F ,分别交 BC AB 于点 H G .现有以下结论: S ΔABC = 3 4 ;②当点 D 与点 C 重合时, FH = 1 2 ;③ AE + CD = 3 DE ;④当 AE = CD 时,四边形 BHFG 为菱形,其中正确结论为 (    )

A.

①②③

B.

①②④

C.

①②③④

D.

②③④

来源:2021年山东省东营市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,在四边形 ABCD 中,对角线 AC BD 交于点 O ,已知 OA = OC OB = OD ,过点 O EF BD ,分别交 AB DC 于点 E F ,连接 DE BF

(1)求证:四边形 DEBF 是菱形:

(2)设 AD / / EF AD + AB = 12 BD = 4 3 ,求 AF 的长.

来源:2021年广西玉林市中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

小王在学习浙教版九上课本第72页例2后,进一步开展探究活动:将一个矩形 ABCD 绕点 A 顺时针旋转 α ( 0 ° < α 90 ° ) ,得到矩形 AB ' C ' D ' ,连结 BD

[ 探究 1 ] 如图1,当 α = 90 ° 时,点 C ' 恰好在 DB 延长线上.若 AB = 1 ,求 BC 的长.

[ 探究 2 ] 如图2,连结 AC ' ,过点 D ' D ' M / / AC ' BD 于点 M .线段 D ' M DM 相等吗?请说明理由.

[ 探究 3 ] 在探究2的条件下,射线 DB 分别交 AD ' AC ' 于点 P N (如图 3 ) ,发现线段 DN MN PN 存在一定的数量关系,请写出这个关系式,并加以证明.

来源:2021年浙江省嘉兴市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

已知在 ΔABC 中, O BC 边的中点,连接 AO ,将 ΔAOC 绕点 O 顺时针方向旋转(旋转角为钝角),得到 ΔEOF ,连接 AE CF

(1)如图1,当 BAC = 90 ° AB = AC 时,则 AE CF 满足的数量关系是   

(2)如图2,当 BAC = 90 ° AB AC 时,(1)中的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由.

(3)如图3,延长 AO 到点 D ,使 OD = OA ,连接 DE ,当 AO = CF = 5 BC = 6 时,求 DE 的长.

来源:2021年广西贵港市中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

【推理】

如图1,在正方形 ABCD 中,点 E CD 上一动点,将正方形沿着 BE 折叠,点 C 落在点 F 处,连结 BE CF ,延长 CF AD 于点 G

(1)求证: ΔBCE ΔCDG

【运用】

(2)如图2,在【推理】条件下,延长 BF AD 于点 H .若 HD HF = 4 5 CE = 9 ,求线段 DE 的长.

【拓展】

(3)将正方形改成矩形,同样沿着 BE 折叠,连结 CF ,延长 CF BF 交直线 AD G H 两点,若 AB BC = k HD HF = 4 5 ,求 DE EC 的值(用含 k 的代数式表示).

来源:2021年浙江省衢州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

已知四边形 ABCD 是边长为1的正方形,点 E 是射线 BC 上的动点,以 AE 为直角边在直线 BC 的上方作等腰直角三角形 AEF AEF = 90 ° ,设 BE = m

(1)如图,若点 E 在线段 BC 上运动, EF CD 于点 P AF CD 于点 Q ,连结 CF

①当 m = 1 3 时,求线段 CF 的长;

②在 ΔPQE 中,设边 QE 上的高为 h ,请用含 m 的代数式表示 h ,并求 h 的最大值;

(2)设过 BC 的中点且垂直于 BC 的直线被等腰直角三角形 AEF 截得的线段长为 y ,请直接写出 y m 的关系式.

来源:2021年江苏省无锡市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

初中数学全等三角形的判定与性质试题