初中数学

如图, ΔABC 中, BAC 为钝角, B = 45 ° ,点 P 是边 BC 延长线上一点,以点 C 为顶点, CP 为边,在射线 BP 下方作 PCF = B

(1)在射线 CF 上取点 E ,连接 AE 交线段 BC 于点 D

①如图1,若 AD = DE ,请直接写出线段 A CE 的数量关系和位置关系;

②如图2,若 AD = 2 DE ,判断线段 AB CE 的数量关系和位置关系,并说明理由;

(2)如图3,反向延长射线 CF ,交射线 BA 于点 C ' ,将 PCF 沿 CC ' 方向平移,使顶点 C 落在点 C ' 处,记平移后的 PCF P ' C ' F ' ,将 P ' C ' F ' 绕点 C ' 顺时针旋转角 α ( 0 ° < α < 45 ° ) C ' F ' 交线段 BC 于点 M C ' P ' 交射线 BP 于点 N ,请直接写出线段 BM MN CN 之间的数量关系.

来源:2017年辽宁省铁岭市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

中,上一点,连接

(1)如图1,若延长线上一点,垂直,求证:

(2)过点为垂足,连接并延长交于点

①如图2,若,求证:

②如图3,若的中点,直接写出的值.(用含的式子表示)

来源:2019年湖北省武汉市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,在菱形 ABCD 中,过点 D DE AB 于点 E ,作 DF BC 于点 F ,连接 EF

求证:(1) ΔADE ΔCDF

(2) BEF = BFE

来源:2017年辽宁省沈阳市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

已知:如图,在正方形 ABCD中,点 E在边 CD上, AQ BE 于点 Q DP AQ 于点 P

(1)求证: AP BQ

(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于 PQ的长.

来源:2016年黑龙江省哈尔滨市中考数学试卷
  • 更新:2021-04-16
  • 题型:未知
  • 难度:未知

已知在 Rt Δ ABC 中, BAC = 90 ° AB AC D E 分别为 AC BC 边上的点(不包括端点),且 DC BE = AC BC = m ,连接 AE ,过点 D DM AE ,垂足为点 M ,延长 DM AB 于点 F

(1)如图1,过点 E EH AB 于点 H ,连接 DH

①求证:四边形 DHEC 是平行四边形;

②若 m = 2 2 ,求证: AE = DF

(2)如图2,若 m = 3 5 ,求 DF AE 的值.

来源:2018年浙江省湖州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中,点 E AB 边的中点, DE 的延长线与 CB 的延长线交于点 F

求证: BC = BF

来源:2017年四川省广元市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,在Rt△ ABC中,∠ C=90°,以 BC为直径的⊙ O交斜边 AB于点 M,若 HAC的中点,连接 MH

(1)求证: MH为⊙ O的切线.

(2)若 MH = 3 2 , tan ABC = 3 4 ,求⊙ O的半径.

(3)在(2)的条件下分别过点 AB作⊙ O的切线,两切线交于点 DAD与⊙ O相切于 N点,过 N点作 NQBC,垂足为 E,且交⊙ OQ点,求线段 NQ的长度.

来源:2016年黑龙江省大庆市中考数学试卷
  • 更新:2021-04-16
  • 题型:未知
  • 难度:未知

如图,在菱形 ABCD中, GBD上一点,连接 CG并延长交 BA的延长线于点 F,交 AD于点 E

(1)求证: AGCG

(2)求证: AG 2GEGF

来源:2016年黑龙江省大庆市中考数学试卷
  • 更新:2021-04-16
  • 题型:未知
  • 难度:未知

如图,在平行四边形 ABCD 中,对角线 AC BD 相交于点 O ,分别过点 A C AE BD CF BD ,垂足分别为 E F AC 平分 DAE

(1)若 AOE = 50 ° ,求 ACB 的度数;

(2)求证: AE = CF

来源:2020年重庆市中考数学试卷(a卷)
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 是正方形, E F 分别是 AB AD 上的一点,且 BF CE ,垂足为 G ,求证: AF = BE

来源:2017年四川省广安市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

杨阳同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语,其具体信息汇集如下:

如图, AB OH CD ,相邻两平行线间的距离相等,ACBD相交于O OD CD .垂足为D,已知 AB 20 米,请根据上述信息求标语CD的长度.

来源:2016年湖北省宜昌市中考数学试卷
  • 更新:2021-04-16
  • 题型:未知
  • 难度:未知

如图, BD AC 于点D CE AB 于点E AD AE .求证: BE CD

来源:2016年湖北省孝感市中考数学试卷
  • 更新:2021-04-16
  • 题型:未知
  • 难度:未知

如图, ΔABC ΔADE 是有公共顶点的等腰直角三角形, BAC = DAE = 90 ° ,点 P 为射线 BD CE 的交点.

(1)求证: BD = CE

(2)若 AB = 2 AD = 1 ,把 ΔADE 绕点 A 旋转,当 EAC = 90 ° 时,求 PB 的长;

来源:2017年四川省甘孜州中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,在△ABC中,AD平分∠BAC,且 BD CD DE AB 于点E DF AC 于点F

(1)求证: AB AC

(2)若 AD = 2 3 DAC 30 ° ,求AC的长.

来源:2016年湖北省襄阳市中考数学试卷
  • 更新:2021-04-16
  • 题型:未知
  • 难度:未知

ABC和△DEF是两个全等的等腰直角三角形, BAC EDF 90 ° ,△DEF的顶点E与△ABC的斜边BC的中点重合,将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q

(1)如图①,当点Q在线段AC上,且 AP AQ 时,求证: BPE CQE

(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当 BP 2 CQ 9 BC的长.

来源:2017年甘肃省天水市中考数学试卷
  • 更新:2021-04-15
  • 题型:未知
  • 难度:未知

初中数学全等三角形的判定与性质解答题