如图,在矩形 中,点 在 上, ,且 ,垂足为 .
(1)求证: ;
(2)若 , ,求四边形 的面积.
三个数3, , 在数轴上从左到右依次排列,且以这三个数为边长能构成三角形,则 的取值范围为 .
如图,在 中, ,作 的垂直平分线交 于点 ,延长 至点 ,使 .
(1)若 ,求 的周长;
(2)若 ,求 的值.
如图,点 是正方形 的边 上的动点, ,且 , .
(1)求证: ;
(2)若 , ,用 表示 的长.
如图, 是 的边 上一点, , 交 于 点, .
(1)求证: ;
(2)若 , ,求 的长.
如图,在菱形 中, , 是对角线 上的两点,且 .
(1)求证: ;
(2)证明四边形 是菱形.
如图,在平面直角坐标系中,点 的坐标为 ,点 的坐标为 ,将点 绕点 顺时针旋转 得到点 ,则点 的坐标为 .
如图,在 中, , .
(1)通过观察尺规作图的痕迹,可以发现直线 是线段 的 ,射线 是 的 ;
(2)在(1)所作的图中,求 的度数.
(1)如图,已知 , 为边 上一点,请用尺规作图的方法在边 上求作一点 ,使 .(保留作图痕迹,不写作法)
(2)在图中,如果 , ,则 的周长是 .
如图1,、分别是的内角、的平分线,过点作,交的延长线于点.
(1)求证:;
(2)如图2,如果,且,求的值;
(3)如果是锐角,且与相似,求的度数,并直接写出的值.
如图,在 中, .线段 是由线段 平移得到的,点 在边 上, 是以 为斜边的等腰直角三角形,且点 恰好在 的延长线上.
(1)求证: ;
(2)求证: .
在《阿基米德全集》中的《引理集》中记录了古希腊数学家阿基米德提出的有关圆的一个引理.如图,已知 , 是弦 上一点,请你根据以下步骤完成这个引理的作图过程.
(1)尺规作图(保留作图痕迹,不写作法);
①作线段 的垂直平分线 ,分别交 于点 , 于点 ,连接 , ;
②以点 为圆心, 长为半径作弧,交 于点 , 两点不重合),连接 , , .
(2)直接写出引理的结论:线段 , 的数量关系.