如图,在 Rt Δ ABC 中, ∠ ACB = 90 ° .线段 EF 是由线段 AB 平移得到的,点 F 在边 BC 上, ΔEFD 是以 EF 为斜边的等腰直角三角形,且点 D 恰好在 AC 的延长线上.
(1)求证: ∠ ADE = ∠ DFC ;
(2)求证: CD = BF .
关于的一元二次方程有实数解.(1)求k的取值范围;(2)如果且k为整数,求k的值.
解方程 (1); (2)3(x-2)2=x(x-2)
如图,直线与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线与x轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式;(2)连接AC,在x轴上是否存在点Q,使以P、B、Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由.
如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,交AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为8,∠CDF=22.5°,求阴影部分的面积.
为了响应政府提出的由中国制造向中国创造转型的号召,某公司自主设计了一款成本为40元的可控温杯,并投放市场进行试销售,经过调查发现该产品每天的销售量y(件)与销售单价x(元)满足一次函数关系:y=﹣10x+1200.(1)求利润S(元)与销售单价x(元)之间的关系式;(2)当销售单价定为多少时,该公司每天获取的利润最大?最大利润是多少元?