初中数学

已知直线 l 1 : y = - 2 x + 10 y 轴于点 A ,交 x 轴于点 B ,二次函数的图象过 A B 两点,交 x 轴于另一点 C BC = 4 ,且对于该二次函数图象上的任意两点 P 1 ( x 1 y 1 ) P 2 ( x 2 y 2 ) ,当 x 1 > x 2 5 时,总有 y 1 > y 2

(1)求二次函数的表达式;

(2)若直线 l 2 : y = mx + n ( n 10 ) ,求证:当 m = - 2 时, l 2 / / l 1

(3) E 为线段 BC 上不与端点重合的点,直线 l 3 : y = - 2 x + q 过点 C 且交直线 AE 于点 F ,求 ΔABE ΔCEF 面积之和的最小值.

来源:2020年福建省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

抛物线 y = x 2 + bx + c 经过点 A ( - 3 , 0 ) 和点 B ( 2 , 0 ) ,与 y 轴交于点 C

(1)求该抛物线的函数表达式;

(2)点 P 是该抛物线上的动点,且位于 y 轴的左侧.

①如图1,过点 P PD x 轴于点 D ,作 PE y 轴于点 E ,当 PD = 2 PE 时,求 PE 的长;

②如图2,该抛物线上是否存在点 P ,使得 ACP = OCB ?若存在,请求出所有点 P 的坐标;若不存在,请说明理由.

来源:2020年海南省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,点 O 为坐标原点,抛物线 y = a x 2 + bx + c 的顶点是 A ( 1 , 3 ) ,将 OA 绕点 O 顺时针旋转 90 ° 后得到 OB ,点 B 恰好在抛物线上, OB 与抛物线的对称轴交于点 C

(1)求抛物线的解析式;

(2) P 是线段 AC 上一动点,且不与点 A C 重合,过点 P 作平行于 x 轴的直线,与 ΔOAB 的边分别交于 M N 两点,将 ΔAMN 以直线 MN 为对称轴翻折,得到△ A ' MN ,设点 P 的纵坐标为 m

①当△ A ' MN ΔOAB 内部时,求 m 的取值范围;

②是否存在点 P ,使 S A ' MN = 5 6 S OA ' B ,若存在,求出满足条件 m 的值;若不存在,请说明理由.

来源:2020年新疆生产建设兵团中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

已知点 A ( 1 , 0 ) 是抛物线 y = a x 2 + bx + m ( a b m 为常数, a 0 m < 0 ) x 轴的一个交点.

(Ⅰ)当 a = 1 m = - 3 时,求该抛物线的顶点坐标;

(Ⅱ)若抛物线与 x 轴的另一个交点为 M ( m , 0 ) ,与 y 轴的交点为 C ,过点 C 作直线 l 平行于 x 轴, E 是直线 l 上的动点, F y 轴上的动点, EF = 2 2

①当点 E 落在抛物线上(不与点 C 重合),且 AE = EF 时,求点 F 的坐标;

②取 EF 的中点 N ,当 m 为何值时, MN 的最小值是 2 2

来源:2020年天津市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

抛物线 y = x 2 + bx + c x 轴交于 A B 两点,与 y 轴交于点 C ,点 A 的坐标为 ( - 1 , 0 ) ,点 C 的坐标为 ( 0 , - 3 ) .点 P 为抛物线 y = x 2 + bx + c 上的一个动点.过点 P PD x 轴于点 D ,交直线 BC 于点 E

(1)求 b c 的值;

(2)设点 F 在抛物线 y = x 2 + bx + c 的对称轴上,当 ΔACF 的周长最小时,直接写出点 F 的坐标;

(3)在第一象限,是否存在点 P ,使点 P 到直线 BC 的距离是点 D 到直线 BC 的距离的5倍?若存在,求出点 P 所有的坐标;若不存在,请说明理由.

来源:2020年云南省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

抛物线 y = x 2 + bx + c x 轴交于 A B 两点,与 y 轴交于点 C ,点 A 的坐标为 ( - 1 , 0 ) ,点 C 的坐标为 ( 0 , - 3 ) .点 P 为抛物线 y = x 2 + bx + c 上的一个动点.过点 P PD x 轴于点 D ,交直线 BC 于点 E

(1)求 b c 的值;

(2)设点 F 在抛物线 y = x 2 + bx + c 的对称轴上,当 ΔACF 的周长最小时,直接写出点 F 的坐标;

(3)在第一象限,是否存在点 P ,使点 P 到直线 BC 的距离是点 D 到直线 BC 的距离的5倍?若存在,求出点 P 所有的坐标;若不存在,请说明理由.

来源:2020年云南省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,二次函数 y = 1 2 x 2 + bx + c 的图象与 x 轴交于 A ( - 2 , 0 ) B ( 4 , 0 ) 两点,交 y 轴于点 C ,点 P 是第四象限内抛物线上的一个动点.

(1)求二次函数的解析式;

(2)如图甲,连接 AC PA PC ,若 S ΔPAC = 15 2 ,求点 P 的坐标;

(3)如图乙,过 A B P 三点作 M ,过点 P PE x 轴,垂足为 D ,交 M 于点 E .点 P 在运动过程中线段 DE 的长是否变化,若有变化,求出 DE 的取值范围;若不变,求 DE 的长.

来源:2020年西藏中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

在平面直角坐标系 xOy 中,直线 y = - 1 2 x + 5 x 轴、 y 轴分别交于点 A B (如图).抛物线 y = a x 2 + bx ( a 0 ) 经过点 A

[小题1]求线段 AB 的长;

[小题2]如果抛物线 y = a x 2 + bx 经过线段 AB 上的另一点 C ,且 BC = 5 ,求这条抛物线的表达式;

[小题3]如果抛物线 y = a x 2 + bx 的顶点 D 位于 ΔAOB 内,求 a 的取值范围.

来源:2020年上海市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图1(注:与图2完全相同)所示,抛物线 y = - 1 2 x 2 + bx + c 经过 B D 两点,与 x 轴的另一个交点为 A ,与 y 轴相交于点 C

(1)求抛物线的解析式.

(2)设抛物线的顶点为 M ,求四边形 ABMC 的面积.(请在图1中探索)

(3)设点 Q y 轴上,点 P 在抛物线上.要使以点 A B P Q 为顶点的四边形是平行四边形,求所有满足条件的点 P 的坐标.(请在图2中探索)

来源:2020年青海省中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,二次函数 y = x 2 3 x 的图象经过 O ( 0 , 0 ) A ( 4 , 4 ) B ( 3 , 0 ) 三点,以点 O 为位似中心,在 y 轴的右侧将 ΔOAB 按相似比 2 : 1 放大,得到△ OA ' B ' ,二次函数 y = a x 2 + bx + c ( a 0 ) 的图象经过 O A ' B ' 三点.

(1)画出△ OA ' B ' ,试求二次函数 y = a x 2 + bx + c ( a 0 ) 的表达式;

(2)点 P ( m , n ) 在二次函数 y = x 2 3 x 的图象上, m 0 ,直线 OP 与二次函数 y = a x 2 + bx + c ( a 0 ) 的图象交于点 Q (异于点 O )

①求点 Q 的坐标(横、纵坐标均用含 m 的代数式表示)

②连接 AP ,若 2 AP > OQ ,求 m 的取值范围;

③当点 Q 在第一象限内,过点 Q QQ ' 平行于 x 轴,与二次函数 y = a x 2 + bx + c ( a 0 ) 的图象交于另一点 Q ' ,与二次函数 y = x 2 3 x 的图象交于点 M N ( M N 的左侧),直线 OQ ' 与二次函数 y = x 2 3 x 的图象交于点 P ' .△ Q ' P ' M QB ' N ,则线段 NQ 的长度等于 

来源:2018年江苏省镇江市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图①,在平面直角坐标系 xOy 中,抛物线 y = a x 2 + bx + 3 经过点 A ( 1 , 0 ) B ( 3 , 0 ) 两点,且与 y 轴交于点 C

(1)求抛物线的表达式;

(2)如图②,用宽为4个单位长度的直尺垂直于 x 轴,并沿 x 轴左右平移,直尺的左右两边所在的直线与抛物线相交于 P Q 两点(点 P 在点 Q 的左侧),连接 PQ ,在线段 PQ 上方抛物线上有一动点 D ,连接 DP DQ

(Ⅰ)若点 P 的横坐标为 1 2 ,求 ΔDPQ 面积的最大值,并求此时点 D 的坐标;

(Ⅱ)直尺在平移过程中, ΔDPQ 面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.

来源:2018年江苏省盐城市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,二次函数 y = 1 3 x 2 + bx + 2 的图象与 x 轴交于点 A B ,与 y 轴交于点 C ,点 A 的坐标为 ( 4 , 0 ) P 是抛物线上一点(点 P 与点 A B C 不重合).

(1) b =   ,点 B 的坐标是  

(2)设直线 PB 与直线 AC 相交于点 M ,是否存在这样的点 P ,使得 PM : MB = 1 : 2 ?若存在,求出点 P 的横坐标;若不存在,请说明理由;

(3)连接 AC BC ,判断 CAB CBA 的数量关系,并说明理由.

来源:2018年江苏省常州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

小贤与小杰在探究某类二次函数问题时,经历了如下过程:

求解体验:

(1)已知抛物线 y = x 2 + bx 3 经过点 ( 1 , 0 ) ,则 b =   ,顶点坐标为  ,该抛物线关于点 ( 0 , 1 ) 成中心对称的抛物线表达式是  

抽象感悟:

我们定义:对于抛物线 y = a x 2 + bx + c ( a 0 ) ,以 y 轴上的点 M ( 0 , m ) 为中心,作该抛物线关于点 M 中心对称的抛物线 y ' ,则我们又称抛物线 y ' 为抛物线 y 的“衍生抛物线”,点 M 为“衍生中心”.

(2)已知抛物线 y = x 2 2 x + 5 关于点 ( 0 , m ) 的衍生抛物线为 y ' ,若这两条抛物线有交点,求 m 的取值范围.

问题解决:

(3)已知抛物线 y = a x 2 + 2 ax b ( a 0 )

①若抛物线 y 的衍生抛物线为 y ' = b x 2 2 bx + a 2 ( b 0 ) ,两抛物线有两个交点,且恰好是它们的顶点,求 a b 的值及衍生中心的坐标;

②若抛物线 y 关于点 ( 0 , k + 1 2 ) 的衍生抛物线为 y 1 ,其顶点为 A 1 ;关于点 ( 0 , k + 2 2 ) 的衍生抛物线为 y 2 ,其顶点为 A 2 ;关于点 ( 0 , k + n 2 ) 的衍生抛物线为 y n ,其顶点为 A n ( n 为正整数).求 A n A n + 1 的长(用含 n 的式子表示).

来源:2018年江西省中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系 xOy 中,已知 A B 两点的坐标分别为 ( 4 , 0 ) ( 4 , 0 ) C ( m , 0 ) 是线段 AB 上一点(与 A B 点不重合),抛物线 L 1 : y = a x 2 + b 1 x + c 1 ( a < 0 ) 经过点 A C ,顶点为 D ,抛物线 L 2 : y = a x 2 + b 2 x + c 2 ( a < 0 ) 经过点 C B ,顶点为 E AD BE 的延长线相交于点 F

(1)若 a = 1 2 m = 1 ,求抛物线 L 1 L 2 的解析式;

(2)若 a = 1 AF BF ,求 m 的值;

(3)是否存在这样的实数 a ( a < 0 ) ,无论 m 取何值,直线 AF BF 都不可能互相垂直?若存在,请直接写出 a 的两个不同的值;若不存在,请说明理由.

来源:2017年浙江省湖州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx 3 A ( 1 , 0 ) B ( 3 , 0 ) ,直线 AD 交抛物线于点 D ,点 D 的横坐标为 2 ,点 P ( m , n ) 是线段 AD 上的动点,过点 P 的直线垂直于 x 轴,交抛物线于点 Q

(1)求直线 AD 及抛物线的解析式;

(2)求线段 PQ 的长度 l m 的关系式, m 为何值时, PQ 最长?

(3)在平面内是否存在整点(横、纵坐标都为整数) R ,使得 P Q D R 为顶点的四边形是平行四边形?若存在,直接写出点 R 的坐标;若不存在,说明理由.

来源:2018年四川省自贡市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

初中数学待定系数法求二次函数解析式试题