在平面直角坐标系 中,函数 和 的图象关于 轴对称,它们与直线 分别相交于点 , .
(1)如图,函数 为 ,当 时, 的长为 ;
(2)函数 为 ,当 时, 的值为 ;
(3)函数 为 ,
①当 时,求 的面积;
②若 ,函数 和 的图象与 轴正半轴分别交于点 , ,当 时,设函数 的最大值和函数 的最小值的差为 ,求 关于 的函数解析式,并直接写出自变量 的取值范围.
在平面直角坐标系中,已知抛物线和直线,点,均在直线上.
(1)若抛物线与直线有交点,求的取值范围;
(2)当,二次函数的自变量满足时,函数的最大值为,求的值;
(3)若抛物线与线段有两个不同的交点,请直接写出的取值范围.
如图1,已知抛物线 与 轴从左至右交于 , 两点,与 轴交于点 .
(1)若抛物线过点 ,求抛物线的解析式;
(2)在第二象限内的抛物线上是否存在点 ,使得以 、 、 三点为顶点的三角形与 相似?若存在,求 的值;若不存在,请说明理由.
(3)如图2,在(1)的条件下,点 的坐标为 ,点 是抛物线上的点,在 轴上,从左至右有 、 两点,且 ,问 在 轴上移动到何处时,四边形 的周长最小?请直接写出符合条件的点 的坐标.
如图,在平面直角坐标系中,二次函数 的图象经过平行四边形 的顶点 , 轴,垂足为点 .点 在 轴正半轴上,点 在 轴负半轴上,点 在 轴正半轴上,且 .
(1)求二次函数的表达式,并判断点 是否在该函数图象上;
(2)点 是线段 上一点,在线段 下方作 .
①当点 运动时,使 的一边 始终过点 ,另一边 交射线 于点 ,(不含点 与 重合的情形)设 , ,求 关于 的函数关系式,并求出 的取值范围.
②当 时,将 绕点 旋转,一条边 交线段 于点 ,另一条边 交线段 于点 ,连接 ,以 为直径作 ,设圆心 的坐标为 ,求 与 之间的函数关系式,并直接写出点 从点 运动到点 时圆心 运动的路径长.
如图,抛物线 与 轴交于点 ,点 ,与 轴交于点 ,抛物线的对称轴为直线 ,点 坐标为 .
(1)求抛物线表达式;
(2)在抛物线上是否存在点 ,使 ,如果存在,求出点 坐标;如果不存在,请说明理由;
(3)在(2)的条件下,若点 在 轴上方,点 是直线 上方抛物线上的一个动点,求点 到直线 的最大距离;
(4)点 是线段 上的动点,点 是线段 上的动点,点 是线段 上的动点,三个动点都不与点 , , 重合,连接 , , ,得到 ,直接写出 周长的最小值.
如图,已知抛物线 与 轴交于点 ,与 轴交于点 ,点 是线段 上方抛物线上的一个动点.
(1)求这条抛物线的表达式及其顶点坐标;
(2)当点 移动到抛物线的什么位置时,使得 ,求出此时点 的坐标;
(3)当点 从 点出发沿线段 上方的抛物线向终点 移动,在移动中,点 的横坐标以每秒1个单位长度的速度变动;与此同时点 以每秒1个单位长度的速度沿 向终点 移动,点 , 移动到各自终点时停止.当两个动点移动 秒时,求四边形 的面积 关于 的函数表达式,并求 为何值时, 有最大值,最大值是多少?
在平面直角坐标系中,抛物线 经过点 和点 ,与 轴交于点 ,与 轴的另一交点为点 .
(1)求抛物线的解析式;
(2)如图1,连接 ,在抛物线上是否存在点 ,使得 ?若存在,请求出点 的坐标;若不存在,请说明理由;
(3)如图2,连接 ,交 轴于点 ,点 是线段 上的动点(不与点 ,点 重合),将 沿 所在直线翻折,得到 ,当 与 重叠部分的面积是 面积的 时,请直接写出线段 的长.
如图,在平面直角坐标系中,抛物线 与 轴正半轴交于点 ,且点 的坐标为 ,过点 作垂直于 轴的直线 . 是该抛物线上的任意一点,其横坐标为 ,过点 作 于点 , 是直线 上的一点,其纵坐标为 .以 , 为边作矩形 .
(1)求 的值.
(2)当点 与点 重合时,求 的值.
(3)当矩形 是正方形,且抛物线的顶点在该正方形内部时,求 的值.
(4)当抛物线在矩形 内的部分所对应的函数值 随 的增大而减小时,直接写出 的取值范围.
已知:如图,一次函数 的图象经过点 , ,与 轴交于点 .点 在线段 上,且 ,过点 作 轴的垂线,垂足为点 .若 .
(1)求这个一次函数的表达式;
(2)已知一开口向下、以直线 为对称轴的抛物线经过点 ,它的顶点为 ,若过点 且垂直于 的直线与 轴的交点为 , ,求这条抛物线的函数表达式.
抛物线 过 , , 三点.
(1)求抛物线的表达式;
(2)如图①,抛物线上一点 在线段 的上方, 交 于点 ,若满足 ,求点 的坐标;
(3)如图②, 为抛物线顶点,过 作直线 ,若点 在直线 上运动,点 在 轴上运动,是否存在这样的点 、 ,使得以 、 、 为顶点的三角形与 相似,若存在,求 、 的坐标,并求此时 的面积;若不存在,请说明理由.
在平面直角坐标系中,函数 为常数)的图象与 轴交于点 .
(1)求点 的坐标.
(2)当此函数图象经过点 时,求此函数的表达式,并写出函数值 随 的增大而增大时 的取值范围.
(3)当 时,若函数 为常数)的图象的最低点到直线 的距离为2,求 的值.
(4)设 , 三个顶点的坐标分别为 、 、 .当函数 为常数)的图象与 的直角边有交点时,交点记为点 .过点 作 轴的垂线,与此函数图象的另一个交点为 与 不重合),过点 作 轴的垂线,与此函数图象的另一个交点为 .若 ,直接写出 的值.
二次函数 的图象与 轴交于 , 两点,与 轴交于点 ,顶点为 ..
(1)求这个二次函数的表达式,并写出点 的坐标;
(2)如图①, 是该二次函数图象的对称轴上一个动点,当 的垂直平分线恰好经过点 时,求点 的坐标;
(3)如图②, 是该二次函数图象上的一个动点,连接 ,取 中点 ,连接 , , ,当 的面积为12时,求点 的坐标.
如图1,矩形 的顶点 , 的坐标分别为 , ,直线 交 于点 , ,抛物线 过 , 两点.
(1)求点 的坐标和抛物线 的表达式;
(2)点 是抛物线 对称轴上一动点,当 时,求所有符合条件的点 的坐标;
(3)如图2,点 ,连接 ,将抛物线 的图象向下平移 个单位得到抛物线 .
①设点 平移后的对应点为点 ,当点 恰好在直线 上时,求 的值;
②当 时,若抛物线 与直线 有两个交点,求 的取值范围.
在平面直角坐标系中, 为坐标原点,直线 交二次函数 的图象于点 , ,点 在该二次函数的图象上,设过点 (其中 且平行于 轴的直线交直线 于点 ,交直线 于点 ,以线段 、 为邻边作矩形 .
(1)若点 的横坐标为8.
①用含 的代数式表示 的坐标;
②点 能否落在该二次函数的图象上?若能,求出 的值;若不能,请说明理由.
(2)当 时,若点 恰好落在该二次函数的图象上,请直接写出此时满足条件的所有直线 的函数表达式.