初中数学

如图,已知一次函数 y = 2 x + 8 的图象与坐标轴交于 A B 两点,并与反比例函数 y = 8 x 的图象相切于点 C

(1)切点 C 的坐标是  

(2)若点 M 为线段 BC 的中点,将一次函数 y = 2 x + 8 的图象向左平移 m ( m > 0 ) 个单位后,点 C 和点 M 平移后的对应点同时落在另一个反比例函数 y = k x 的图象上时,求 k 的值.

来源:2019年贵州省贵阳市中考数学试卷
  • 更新:2021-05-19
  • 题型:未知
  • 难度:未知

如图, Rt Δ ABC 中, ACB = 90 ° ,顶点 A B 都在反比例函数 y = k x ( x > 0 ) 的图象上,直线 AC x 轴,垂足为 D ,连结 OA OC ,并延长 OC AB 于点 E ,当 AB = 2 OA 时,点 E 恰为 AB 的中点,若 AOD = 45 ° OA = 2 2

(1)求反比例函数的解析式;

(2)求 EOD 的度数.

来源:2020年江西省中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,已知反比例函数 y = k 1 x ( x > 0 ) 的图象与反比例函数 y = k 2 x ( x < 0 ) 的图象关于 y 轴对称, A ( 1 , 4 ) B ( 4 , m ) 是函数 y = k 1 x ( x > 0 ) 图象上的两点,连接 AB ,点 C ( 2 , n ) 是函数 y = k 2 x ( x < 0 ) 图象上的一点,连接 AC BC

(1)求 m n 的值;

(2)求 AB 所在直线的表达式;

(3)求 ΔABC 的面积.

来源:2018年山东省聊城市中考数学试卷
  • 更新:2021-05-17
  • 题型:未知
  • 难度:未知

已知反比例函数 y = m x 的图象经过点 A ( 2 , 3 )

(1)求该反比例函数的表达式;

(2)如图,在反比例函数 y = m x 的图象上点 A 的右侧取点 C ,过点 C x 轴的垂线交 x 轴于点 H ,过点 A y 轴的垂线交直线 CH 于点 D

①过点 A ,点 C 分别作 x 轴, y 轴的垂线,两线相交于点 B ,求证: O B D 三点共线;

②若 AC = 2 OA ,求证: AOD = 2 DOH

来源:2021年四川省雅安市中考数学试卷
  • 更新:2021-08-15
  • 题型:未知
  • 难度:未知

如图,在直角坐标系中, Rt Δ ABC 的直角边 AC x 轴上, ACB = 90 ° AC = 1 ,反比例函数 y = k x ( k > 0 ) 的图象经过 BC 边的中点 D ( 3 , 1 )

(1)求这个反比例函数的表达式;

(2)若 ΔABC ΔEFG 成中心对称,且 ΔEFG 的边 FG y 轴的正半轴上,点 E 在这个函数的图象上.

①求 OF 的长;

②连接 AF BE ,证明四边形 ABEF 是正方形.

来源:2017年山东省淄博市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图,已知一次函数 y 1 = kx + b 的图象与反比例函数 y 2 = 4 x 的图象交于点 A ( 4 , m ) ,且与 y 轴交于点 B ,第一象限内点 C 在反比例函数 y 2 = 4 x 的图象上,且以点 C 为圆心的圆与 x 轴, y 轴分别相切于点 D B

(1)求 m 的值;

(2)求一次函数的表达式;

(3)根据图象,当 y 1 < y 2 < 0 时,写出 x 的取值范围.

来源:2016年浙江省嘉兴市(舟山市)中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 是矩形,点 A 在第四象限 y 1 = 2 x 的图象上,点 B 在第一象限 y 2 = k x 的图象上, AB x 轴于点 E ,点 C 与点 D y 轴上, AD = 3 2 S 矩形OCBE = 3 2 S 矩形ODAE

(1)求点 B 的坐标.

(2)若点 P x 轴上, S ΔBPE = 3 ,求直线 BP 的解析式.

来源:2019年辽宁省盘锦市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

阅读理解:

在平面直角坐标系中,点 M 的坐标为 ( x 1 y 1 ) ,点 N 的坐标为 ( x 2 y 2 ) ,且 x 1 x 2 y 1 y 2 ,若 M N 为某矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为 M N 的"相关矩形".如图1中的矩形为点 M N 的"相关矩形".

(1)已知点 A 的坐标为 ( 2 , 0 )

①若点 B 的坐标为 ( 4 , 4 ) ,则点 A B 的"相关矩形"的周长为   

②若点 C 在直线 x = 4 上,且点 A C 的"相关矩形"为正方形,求直线 AC 的解析式;

(2)已知点 P 的坐标为 ( 3 , 4 ) ,点 Q 的坐标为 ( 6 , 2 ) 若使函数 y = k x 的图象与点 P Q 的"相关矩形"有两个公共点,直接写出 k 的取值.

来源:2021年内蒙古赤峰市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,一次函数 y = mx + n ( m 0 ) 的图象与 y 轴交于点 C ,与反比例函数 y = k x ( k 0 ) 的图象交于 A B 两点,点 A 在第一象限,纵坐标为4,点 B 在第三象限, BM x 轴,垂足为点 M BM = OM = 2

(1)求反比例函数和一次函数的解析式.

(2)连接 OB MC ,求四边形 MBOC 的面积.

来源:2019年辽宁省鞍山市中考数学试卷
  • 更新:2021-05-11
  • 题型:未知
  • 难度:未知

矩形 AOBC 中, OB = 4 OA = 3 .分别以 OB OA 所在直线为 x 轴, y 轴,建立如图1所示的平面直角坐标系. F BC 边上一个动点(不与 B C 重合),过点 F 的反比例函数 y = k x ( k > 0 ) 的图象与边 AC 交于点 E

(1)当点 F 运动到边 BC 的中点时,求点 E 的坐标;

(2)连接 EF ,求 EFC 的正切值;

(3)如图2,将 ΔCEF 沿 EF 折叠,点 C 恰好落在边 OB 上的点 G 处,求此时反比例函数的解析式.

来源:2018年四川省达州市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,一次函数 y = k 1 x + b ( k 1 0 ) 与反比例函数 y = k 2 x ( k 2 0 ) 的图象交于点 A ( 2 , 3 ) B ( n , - 1 )

(1)求反比例函数和一次函数的解析式;

(2)判断点 P ( - 2 , 1 ) 是否在一次函数 y = k 1 x + b 的图象上,并说明理由;

(3)写出不等式 k 1 x + b k 2 x 的解集.

来源:2021年新疆生产建设兵团中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图,正比例函数 y = 1 2 x 与反比例函数 y = k x ( x > 0 ) 的图象交于点 A ,过点 A AB y 轴于点 B OB = 4 ,点 C 在线段 AB 上,且 AC = OC

(1)求 k 的值及线段 BC 的长;

(2)点 P B 点上方 y 轴上一点,当 ΔPOC ΔPAC 的面积相等时,请求出点 P 的坐标.

来源:2021年山东省烟台市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,一次函数 y = 1 2 x + 5 y = - 2 x 的图象相交于点 A ,反比例函数 y = k x 的图象经过点 A

(1)求反比例函数的表达式;

(2)设一次函数 y = 1 2 x + 5 的图象与反比例函数 y = k x 的图象的另一个交点为 B ,连接 OB ,求 ΔABO 的面积.

来源:2020年山东省枣庄市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图所示,四边形 ABCD 是菱形,边 BC x 轴上,点 A ( 0 , 4 ) ,点 B ( 3 , 0 ) ,双曲线 y = k x 与直线 BD 交于点 D 、点 E

(1)求 k 的值;

(2)求直线 BD 的解析式;

(3)求 ΔCDE 的面积.

来源:2018年四川省巴中市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,菱形 ABCD 的顶点 A y 轴正半轴上,边 BC x 轴上,且 BC = 5 sin ABC = 4 5 ,反比例函数 y = k x ( x > 0 ) 的图象分别与 AD CD 交于点 M 、点 N ,点 N 的坐标是 ( 3 , n ) ,连接 OM MC

(1)求反比例函数的解析式;

(2)求证: ΔOMC 是等腰三角形.

来源:2018年辽宁省辽阳市中考数学试卷
  • 更新:2021-05-10
  • 题型:未知
  • 难度:未知

初中数学反比例函数综合题解答题