如图,已知一次函数 的图象与坐标轴交于 , 两点,并与反比例函数 的图象相切于点 .
(1)切点 的坐标是 ;
(2)若点 为线段 的中点,将一次函数 的图象向左平移 个单位后,点 和点 平移后的对应点同时落在另一个反比例函数 的图象上时,求 的值.
如图, 中, ,顶点 , 都在反比例函数 的图象上,直线 轴,垂足为 ,连结 , ,并延长 交 于点 ,当 时,点 恰为 的中点,若 , .
(1)求反比例函数的解析式;
(2)求 的度数.
如图,已知反比例函数 的图象与反比例函数 的图象关于 轴对称, , 是函数 图象上的两点,连接 ,点 是函数 图象上的一点,连接 , .
(1)求 , 的值;
(2)求 所在直线的表达式;
(3)求 的面积.
已知反比例函数 的图象经过点 .
(1)求该反比例函数的表达式;
(2)如图,在反比例函数 的图象上点 的右侧取点 ,过点 作 轴的垂线交 轴于点 ,过点 作 轴的垂线交直线 于点 .
①过点 ,点 分别作 轴, 轴的垂线,两线相交于点 ,求证: , , 三点共线;
②若 ,求证: .
如图,在直角坐标系中, 的直角边 在 轴上, , ,反比例函数 的图象经过 边的中点 .
(1)求这个反比例函数的表达式;
(2)若 与 成中心对称,且 的边 在 轴的正半轴上,点 在这个函数的图象上.
①求 的长;
②连接 , ,证明四边形 是正方形.
如图,已知一次函数 的图象与反比例函数 的图象交于点 ,且与 轴交于点 ,第一象限内点 在反比例函数 的图象上,且以点 为圆心的圆与 轴, 轴分别相切于点 ,
(1)求 的值;
(2)求一次函数的表达式;
(3)根据图象,当 时,写出 的取值范围.
如图,四边形 是矩形,点 在第四象限 的图象上,点 在第一象限 的图象上, 交 轴于点 ,点 与点 在 轴上, , .
(1)求点 的坐标.
(2)若点 在 轴上, ,求直线 的解析式.
阅读理解:
在平面直角坐标系中,点 的坐标为 , ,点 的坐标为 , ,且 , ,若 、 为某矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为 、 的"相关矩形".如图1中的矩形为点 、 的"相关矩形".
(1)已知点 的坐标为 .
①若点 的坐标为 ,则点 、 的"相关矩形"的周长为 ;
②若点 在直线 上,且点 、 的"相关矩形"为正方形,求直线 的解析式;
(2)已知点 的坐标为 ,点 的坐标为 若使函数 的图象与点 、 的"相关矩形"有两个公共点,直接写出 的取值.
如图,在平面直角坐标系中,一次函数 的图象与 轴交于点 ,与反比例函数 的图象交于 , 两点,点 在第一象限,纵坐标为4,点 在第三象限, 轴,垂足为点 , .
(1)求反比例函数和一次函数的解析式.
(2)连接 , ,求四边形 的面积.
矩形 中, , .分别以 , 所在直线为 轴, 轴,建立如图1所示的平面直角坐标系. 是 边上一个动点(不与 , 重合),过点 的反比例函数 的图象与边 交于点 .
(1)当点 运动到边 的中点时,求点 的坐标;
(2)连接 ,求 的正切值;
(3)如图2,将 沿 折叠,点 恰好落在边 上的点 处,求此时反比例函数的解析式.
如图,一次函数 与反比例函数 的图象交于点 , .
(1)求反比例函数和一次函数的解析式;
(2)判断点 是否在一次函数 的图象上,并说明理由;
(3)写出不等式 的解集.
如图,正比例函数 与反比例函数 的图象交于点 ,过点 作 轴于点 , ,点 在线段 上,且 .
(1)求 的值及线段 的长;
(2)点 为 点上方 轴上一点,当 与 的面积相等时,请求出点 的坐标.
如图,在平面直角坐标系中,一次函数 和 的图象相交于点 ,反比例函数 的图象经过点 .
(1)求反比例函数的表达式;
(2)设一次函数 的图象与反比例函数 的图象的另一个交点为 ,连接 ,求 的面积.
如图所示,四边形 是菱形,边 在 轴上,点 ,点 ,双曲线 与直线 交于点 、点 .
(1)求 的值;
(2)求直线 的解析式;
(3)求 的面积.