如图,在平面直角坐标系中,一次函数 y = mx + n ( m ≠ 0 ) 的图象与 y 轴交于点 C ,与反比例函数 y = k x ( k ≠ 0 ) 的图象交于 A , B 两点,点 A 在第一象限,纵坐标为4,点 B 在第三象限, BM ⊥ x 轴,垂足为点 M , BM = OM = 2 .
(1)求反比例函数和一次函数的解析式.
(2)连接 OB , MC ,求四边形 MBOC 的面积.
已知抛物线的顶点在抛物线上,且抛物线在轴上截得的线段长是,求和的值.
下表给出了代数式与的一些对应值:
(1)请在表内的空格中填入适当的数; (2)设,则当取何值时,? (3)请说明经过怎样平移函数的图象得到函数的图象.
抛物线过点,顶点为M点. (1)求该抛物线的解析式; (2)试判断抛物线上是否存在一点P,使∠POM=90˚.若不存在,说明理由;若存在,求出P点的坐标; (3)试判断抛物线上是否存在一点K,使∠OMK=90˚,说明理由.
如图,为抛物线上对称轴右侧的一点,且点在轴上方,过点作垂直轴于点,垂直轴于点,得到矩形.若,求矩形的面积.
如图,已知抛物线经过,三点,且与轴的另一个交点为. (1)求抛物线的解析式; (2)用配方法求抛物线的顶点的坐标和对称轴; (3)求四边形的面积.