如图,在平面直角坐标系中,一次函数 y = mx + n ( m ≠ 0 ) 的图象与 y 轴交于点 C ,与反比例函数 y = k x ( k ≠ 0 ) 的图象交于 A , B 两点,点 A 在第一象限,纵坐标为4,点 B 在第三象限, BM ⊥ x 轴,垂足为点 M , BM = OM = 2 .
(1)求反比例函数和一次函数的解析式.
(2)连接 OB , MC ,求四边形 MBOC 的面积.
发现规律
(1)如图①, ΔABC 与 ΔADE 都是等边三角形,直线 BD , CE 交于点 F .直线 BD , AC 交于点 H .求 ∠ BFC 的度数.
(2)已知: ΔABC 与 ΔADE 的位置如图②所示,直线 BD , CE 交于点 F .直线 BD , AC 交于点 H .若 ∠ ABC = ∠ ADE = α , ∠ ACB = ∠ AED = β ,求 ∠ BFC 的度数.
应用结论
(3)如图③,在平面直角坐标系中,点 O 的坐标为 ( 0 , 0 ) ,点 M 的坐标为 ( 3 , 0 ) , N 为 y 轴上一动点,连接 MN .将线段 MN 绕点 M 逆时针旋转 60 ° 得到线段 MK ,连接 NK , OK .求线段 OK 长度的最小值.
已知,在平面直角坐标系中,抛物线 y = x 2 - 2 mx + m 2 + 2 m - 1 的顶点为 A .点 B 的坐标为 ( 3 , 5 ) .
(1)求抛物线过点 B 时顶点 A 的坐标;
(2)点 A 的坐标记为 ( x , y ) ,求 y 与 x 的函数表达式;
(3)已知 C 点的坐标为 ( 0 , 2 ) ,当 m 取何值时,抛物线 y = x 2 - 2 mx + m 2 + 2 m - 1 与线段 BC 只有一个交点.
小伟和小梅两位同学玩掷骰子的游戏,两人各掷一次均匀的骰子.以掷出的点数之差的绝对值判断输赢.若所得数值等于0,1,2,则小伟胜;若所得数值等于3,4,5,则小梅胜.
(1)请利用表格分别求出小伟、小梅获胜的概率;
(2)判断上述游戏是否公平.如果公平,请说明理由;如果不公平,请利用表格修改游戏规则,以确保游戏的公平性.
如图, ΔABC 的外角 ∠ BAM 的平分线与它的外接圆相交于点 E ,连接 BE , CE ,过点 E 作 EF / / BC ,交 CM 于点 D .
求证:(1) BE = CE ;
(2) EF 为 ⊙ O 的切线.
居家学习期间,小晴同学运用所学知识在自家阳台测对面大楼的高度.如图,她利用自制的测角仪测得该大楼顶部的仰角为 45 ° ,底部的俯角为 38 ° ;又用绳子测得测角仪距地面的高度 AB 为 31 . 6 m .求该大楼的高度(结果精确到 0 . 1 m ) .
(参考数据: sin 38 ° ≈ 0 . 62 , cos 38 ° ≈ 0 . 79 , tan 38 ° ≈ 0 . 78 )