如图,在平面直角坐标系中,一次函数 的图象与反比例函数 的图象交于点 和 .
(1)求一次函数和反比例函数的表达式;
(2)请直接写出 时, 的取值范围;
(3)过点 作 轴, 于点 ,点 是直线 上一点,若 ,求点 的坐标.
如图,直线 为常数, 与双曲线 为常数, 的交点为 、 , 轴于点 , , .
(1)求 的值;
(2)点 在 轴上,如果 ,求 点的坐标.
如图,在平行四边形 中,点 、 、 的坐标分别是 、 、 ,双曲线 过点 .
(1)求双曲线的解析式;
(2)作直线 交 轴于点 ,连接 ,求 的面积.
如图,一次函数 的图象与反比例函数 的图象相交于 , 两点.
(1)求一次函数和反比例函数的表达式;
(2)直线 交 轴于点 ,点 是 轴上的点,若 的面积是4,求点 的坐标.
已知直线 与 轴交于点 ,与 轴交于点 ,且与双曲线 交于点 .
(1)试确定双曲线的函数表达式;
(2)将 沿 轴翻折后,得到 ,画出 的图象,并求出 的函数表达式;
(3)在(2)的条件下,点 是线段 上点(不包括端点),过点 作 轴的平行线,分别交 于点 ,交双曲线于点 ,求 的取值范围.
一次函数 的图象经过点 ,且与反比例函数 的图象交于点 .
(1)求一次函数的解析式;
(2)将直线 向上平移10个单位后得到直线 , 与反比例函数 的图象相交,求使 成立的 的取值范围.
如图,在平面直角坐标系中, 为坐标原点, 的边 垂直与 轴,垂足为点 ,反比例函数 的图象经过 的中点 ,且与 相交于点 , , ,
(1)求反比例函数 的解析式;
(2)求 的值;
(3)求经过 、 两点的一次函数解析式.
如图,在平面直角坐标系 中,一次函数 的图象与反比例函数 的图象相交于点 ,与 轴相交于点 .
(1)求反比例函数的表达式;
(2)过点 的直线交反比例函数的图象于另一点 ,交 轴正半轴于点 ,当 是以 为底的等腰三角形时,求直线 的函数表达式及点 的坐标.
如图,一次函数 、 为常数, 的图象与 轴、 轴分别交于 、 两点,且与反比例函数 为常数,且 的图象在第二象限交于点 . 轴,垂足为 ,若 .
(1)求一次函数与反比例函数的解析式;
(2)记两函数图象的另一个交点为 ,求 的面积;
(3)直接写出不等式 的解集.
探究函数性质时,我们经历了列表、描点、连线画函数图象,观察分析图象特征,概括函数性质的过程.以下是我们研究函数 性质及其应用的部分过程,请按要求完成下列各小题.
|
|
|
|
0 |
1 |
2 |
3 |
4 |
5 |
|
|
|
6 |
5 |
4 |
|
2 |
1 |
|
7 |
|
(1)写出函数关系式中 及表格中 , 的值:
, , ;
(2)根据表格中的数据在所给的平面直角坐标系中画出该函数的图象,并根据图象写出该函数的一条性质: ;
(3)已知函数 的图象如图所示,结合你所画的函数图象,直接写出不等式 的解集.
如图,一次函数 与反比例函数 的图象交于点 , .
(1)求反比例函数和一次函数的解析式;
(2)判断点 是否在一次函数 的图象上,并说明理由;
(3)写出不等式 的解集.
如图,一次函数 与反比例函数 的图象交于
点 和 ,与 轴交于点 .
(1)求一次函数和反比例函数的解析式;
(2)在 轴上取一点 ,当 的面积为3时,求点 的坐标;
(3)将直线 向下平移2个单位后得到直线 ,当函数值 时,求 的取值范围.
如图,正比例函数 与反比例函数 的图象交于点 ,过点 作 轴于点 , ,点 在线段 上,且 .
(1)求 的值及线段 的长;
(2)点 为 点上方 轴上一点,当 与 的面积相等时,请求出点 的坐标.
如图,反比例函数 的图象与正比例函数 的图象相交于 , 两点,点 在第四象限, 轴, .
(1)求 的值及点 的坐标;
(2)求 的值.